
SANDIA REPORT
SAND2015-0224
Unlimited Release

Printed January, 2015

Turbocharging Quantum Tomography

R. Blume-Kohout, J. K. Gamble, E. Nielsen, P. Maunz, T. Scholten, K. Rudinger

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
TMENT OF EN

E
R

G
Y

•� •�U
N

I
T

E
D

STATES OF A
M

E
R

I
C

A

2



SAND2015-0224
Unlimited Release

Printed January, 2015

Turbocharging Quantum Tomography

R. Blume-Kohout
Mail Stop 1322

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185

J. K. Gamble, E. Nielsen, P. Maunz, T. Scholten, K. Rudinger

Abstract

Quantum tomography is used to characterize quantum operations implemented in quantum
information processing (QIP) hardware. Traditionally, state tomography has been used
to characterize the quantum state prepared in an initialization procedure, while quantum
process tomography is used to characterize dynamical operations on a QIP system. As
such, tomography is critical to the development of QIP hardware (since it is necessary
both for debugging and validating as-built devices, and its results are used to influence
the next generation of devices). But tomography su↵ers from several critical drawbacks.
In this report, we present new research that resolves several of these flaws. We describe a
new form of tomography called gate set tomography (GST), which unifies state and process
tomography, avoids prior methods critical reliance on precalibrated operations that are not
generally available, and can achieve unprecedented accuracies. We report on theory and
experimental development of adaptive tomography protocols that achieve far higher fidelity
in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and
experimental analysis of process tomography on multispin systems, and demonstrate how to
more e↵ectively detect and characterize quantum noise using carefully tailored ensembles of
input states.
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Chapter 1

Introduction

The goal of this project, a 2-year Early Career LDRD called “Turbocharging Quantum
Tomography”, was to advance the state of the art in quantum tomography. Quantum to-
mography denotes the suite of techniques used for detailed characterization of quantum
systems, and especially quantum logic devices such as qubits. While there are many variants
of tomography, most approaches to date are either state tomography or process tomography.

State tomography is used to find the d ⇥ d density matrix that describes a repeatable
procedure for system initialization. By repeating the procedure over and over, many (N)
samples of a state ⇢ are generated; these samples are measured in various bases, and the
resulting statistics are combined to obtain an estimate b⇢ of ⇢. It is this combining of many
snapshots, in di↵erent bases, that inspired the name “tomography”, by analogy to tomo-
graphic imaging (e.g. in medicine).

Process tomography is used to find the d2⇥d2 process matrix that describes a repeatable
quantum operation (e.g. logic gate). This is done in close analogy to state tomography,
except that a variety of di↵erent initial states ⇢i are prepared, and then the unknown process
E is applied to them; state tomography is then used to estimate E [⇢i] for each of the input
states, and these results are combined to form an estimate Ê of the process E .

The most important accomplishment of this project was to introduce a new form of
tomography called gate-set tomography (GST), which subsumes both state and process to-
mography (along with the less well-known measurement tomography) into a single unified
procedure for characterizing the full functionality of a quantum logic device. GST solves one
of the main outstanding problems identified at the beginning of this project, the fragility
of tomography to calibration errors. GST is, with no exaggeration at all, a revolutionary
protocol, and its development occupies the first three technical chapters of this report.

In addition, this project led to two new developments in photonic tomography. While
not as significant as GST, both are worthy accomplishments. They were performed in
collaboration with Aephraim Steinberg’s experimental group at the University of Toronto,
and have produced high-quality papers (published in Physical Review Letters and Physical
Review X ).
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Chapter 2

Quantum measurement and
tomography

Quantum systems are interesting because they march to a di↵erent drummer. They obey a
di↵erent set of rules from the classical systems we are used to. These rules are technologically
interesting, because they permit new capabilities (fast algorithms) and forbid some others
(perfect copying). But these new rules also create new engineering challenges. The curious
nature of measurements (or observations) of quantum systems is responsible for many of
these challenges.

2.1 The nature of quantum measurements

Classical systems may be observed (and thus measured) in various ways, but these di↵erent
measurements are all compatible. They emphasize di↵erent properties of the classical system
(e.g. mass, color, location) that exist simultaneously, and can in principle be measured
simultaneously. That is, if we can measure a classical system’s position x, and we can also
measure its velocity v, then there is no obstacle to observing its location in phase space
(x, v). A single observation can reveal every property, which is to say every aspect of its
state.

In the previous paragraph, “state” means “all the information necessary to predict the
outcome of future measurements on the system”. This is sometimes called a state of real-
ity. There is another notion of state, states of knowledge, which encapsulate how a partly-
informed observer might describe the system. These are probability distributions over states
of reality – e.g., rather than a single point (x, v), a distribution p(x, v). Such states cannot
be found out by a single observation; the probabilities can only be reconstructed (approxi-
mately) from observations on many identical samples. But it remains true that only a single
measurement procedure is required – and there is no better strategy than repeating it many
times and estimating the distribution from its statistics.

In contrast, there is no uniquely powerful, optimally informative measurement for a
quantum system. Quantum systems have many properties that are mutually incompatible.
Only one (or more generally a small subset) of these properties can have well-defined unique
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values at any given time. Observing incompatible properties demands distinct and incom-
patible procedures. If x and v are incompatible properties, and a system currently has a
well-defined (i.e., predictable) value of x, then the result of attempting to observe v is un-
predictable. However, nontrivial probabilities can be assigned to its outcomes, so v is not
necessarily “completely unpredictable” – just not perfectly predictable.

As a result of all this, identifying (or estimating) a quantum system’s state is rather more
challenging. If we happen to know the state | i in advance, then we can choose and perform
the measurement tailored to its well-defined properties. Its outcome will be predictable,
and upon observing the (unique) predicted outcome, we gain confidence that indeed the
system was in state | i before we measured it. But quantum states are much like classical
states of knowledge (probability distributions), because even after a measurement reveals
the predicted value, we cannot be sure that the system’s state was original | i. There are
other states – similar, but not identical to | i – that could have generated identical data.
Only by measuring many identically prepared samples can we approach certainty that they
were all prepared in | i, or in a nearby state.

If we do not know that the system’s state is | i in advance, then things get harder. We
have to measure a variety of di↵erent properties. None of them (typically) will be perfectly
predictable, but if they are wisely chosen, then their outcomes’ collective probabilities will
uniquely identify the state. (This is not obvious, but it follows from the mathematics stated
in the next section). Of course, as noted above in the context of classical states of knowledge,
probabilities cannot be measured by observing a single sample. Nor can they be estimated
exactly with any finite number of samples. So getting an approximate estimate of the
quantum state requires repeated measurements, of various properties, on many identically
prepare samples.

Generally, quantum systems are found not in pure quantum states | i, but in probabilistic
mixtures of multiple di↵erent | ji. These are mixed quantum states, and they are described
by density matrices of the form

⇢ =
X

j

pj | jih j|,

which represent quantum “states of knowledge”. That is, they represent imperfect knowledge
about the system, and do not assign a unique value to any complete property of the system
1. Noise and fluctuations are su�ciently ubiquitous for quantum systems that we expect to
find systems in states that are at least slightly mixed, and therefore if we set out to estimate
the state of an ensemble of identically prepared quantum systems, the estimate will be a
density matrix ⇢̂, not a pure state. Fortunately, generic mixed states can be reconstructed

1A “complete” property is one whose value uniquely constrains the quantum state. In contrast, an
incomplete property is a strict coarse-graining of a complete property, and therefore its value is consistent with
multiple distinct states for the system. States are distinct if they predict di↵erent probability distributions
(or even, as in this case, di↵erent well-defined and deterministic values) for some observation on the system.
Thus, the point of the sentence from which this footnote originated is that a mixed quantum state may assign
a unique value to an incomplete or coarse-grained property, but there will then exist a more finely resolved
measurement, corresponding to the complete property that was coarse-grained to obtain the incomplete
property, whose outcome is not predicted with certainty by that mixed state.
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from a finite (if sometimes awkwardly large) set of probabilities for various properties, just
like pure states as discussed in the previous paragraph.

One final aspect of quantum measurement is worth noting before we move on. Identifying
an a-priori unknown quantum state requires, as noted above, measuring multiple properties
and estimating the probabilities of their outcomes. However, it is always possible to combine
these properties into a single property – but a property not of the system alone, but jointly of
the system and an ancillary system. For example, states of quantum bits (qubits) are often
estimated by independently measuring three binary-valued properties called X, Y , and Z.
But these properties can be combined into a single joint property of the qubit and a 3-sided
die. To measure this property, we first roll the 3-sided die, then (conditional on its result)
measure either X, Y , or Z on the qubit. This experiment has 6 possible outomes, and their
probabilities uniquely define the qubit’s quantum state.

The feasibility of this process muddies the waters, calling into question the notion that
quantum state estimation requires measurement of multiple properties – since it is su�cient
to measure a single property (albeit a joint property of the system-of-interest and an ancil-
lary random variable). This suggests the possibility that some such measurement is really
fundamental, and can serve as the “one observation to rule them all” that would reveal all
necessary information about any quantum state. One of the results reported here helps to
resolve this confusion. We show in the discussion of adaptive tomography that while it is
possible to estimate any arbitrary state using a single fixed measurement, is never optimal.
For almost every state ⇢, there is a di↵erent measurement – one that measures a property
of the system-of-interest alone – that provides much sharper and more useful information
about ⇢ than any “generic” measurement not tailored to ⇢.

2.2 Mathematical formalism of quantum measurement

The mathematical structure of quantum measurements is often taken as a fiat construction.
It is not. Instead, it is based upon (and best understood as a generalization of) the theory
of classical systems and measurements.

2.2.1 Classical theory

A classical system is modeled by a sample space, which is a set containing one element
for each outcome of the most fine-grained observation on that system. (Obviously, this is
somewhat subjective in practice – it is always possible that we might discover, in the future, a
further fine-graining, and this would enlarge the sample space). In the simplest and cleanest
picture, an observation of that system is a process that yields a single outcome (element
of the sample space). If repeated immediately, the observation will yield (by assumption
and definition) the same outcome. We can thus predict the outcome of such a repeated
measurement by recording the first outcome. This is a state for the system. Thus, in this

15



simple picture, both states and outcomes are labeled by elements of the sample space.

Both classical states and classical measurements can be defined more generally. In gen-
eral, a state is all the information required to predict, as well as possible, the outcome of
the next observation on the system. Clearly, an element of the sample space fits this bill.
But some agents have imperfect knowledge, and cannot predict the outcome perfectly. In
this case, a more general state is required, and this corresponds to a measure – or probabil-
ity distribution – over outcomes. This sort of state is sometimes called an epistemic state
(indicating that it describes a particular observer’s knowledge) in contrast to ontic states
(indicating that they describe a real property), which specify a unique outcome.

A general classical measurement is described by a set of indicator functions : {Ii(x)}.
Here, x ranges over the sample space; each Ii(x) is function taking values in the closed real
interval [0, 1]; and the sum of all indicator functions is equal to

P
i Ii(x) = 1 (for all values

of x). This set of indicator functions has the following operational interpretation: Given
that the system’s state is a probability measure µ that we describe informally as p(x)dx, the
probability of outcome i is given by

Pr(i) =

Z
Ii(x)p(x)dx.

This is a linear dot product between the indicator function Ii and the state p(x)dx, and
for finite sample spaces is more conveniently written as Pr(i) = ~p · ~Ii =

P
k p(k)Ii(k). The

simple theory stated earlier can be recovered (for a countable sample space) by choosing
indicator functions that are Kronecker delta functions: Ii(x) = �i,x.

In this framework, pure states are those that cannot be formed by convex combination
of any other states, which means that they correspond to individual elements of the sample
space. A sharp measurements, similarly, cannot be obtained by coarse-graining or convex
combination, and corresponds (uniquely) to the maximally fine-grained measurement that
reveals the state exactly. Mixed states are represented by probability distributions, and
fuzzy measurements are represented by nontrivial indicator functions. A mixed state does
not perfectly predict the outcome of a sharp measurement, while fuzzy measurements do
not uniquely reveal the state (and therefore cannot be used to obtain information which
perfectly predicts future sharp measurements).

2.2.2 Quantum measurement theory

There is a simple reason for presenting classical theory (and for the way it was presented)
in the previous section. Quantum theory maintains the same structure. The mathemati-
cal objects are di↵erent, but the ways in which they combine to produce probabilities for
observations are nearly identical. Thus, the presentation of classical theory in the previ-
ous sections can serve as a template for understanding the theory that underlies quantum
tomography.

The single most important di↵erence between quantum and classical theory is this: there
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is no unique or preferred measurement on a quantum system. In classical theory,
there is such a measurement, because classical theory is grounded on a sample space – which
is nothing but the set of mutually exhaustive and exclusive outcomes of some measurement
(a.k.a. observation). This (potentially implicit) measurement defines the system.

In a quantum system, the analogous role is played by a Hilbert space – a complex d-
dimensional vector space H = Cd. (This is an oversimplification; much of the fun mathe-
matics in quantum theory arises in the context of systems whose Hilbert space is infinite-
dimensional, and therefore not isomorphic to Cd. However, this report is largely concerned
with the finite-dimensional spaces used in quantum information science. When we do con-
sider infinite-dimensional quantum mechanics, none of their mathematical peculiarities will
be relevant.)

Pure states and sharp measurement outcomes of the quantum system are represented by
elements of H – i.e., complex vectors – exactly as their classical counterparts are represented
by elements of the sample space. More precisely, pure states are given by elements of H,
denoted in Dirac’s notation as

| i 2 H,

while sharp measurement outcomes are given by elements of the dual space H⇤,

h�| 2 H⇤.

However, because H is a Hilbert space, it is isomorphic to its dual space, and Dirac’s bra/ket
notation is only required to keep track of whether a given object is a row or a column vector.

The second most important di↵erence between quantum and classical theory lies in how
probabilities are calculated: whereas in classical theory probabilities are bilinear in
the elements of the sample space representing states and outcomes, quantum
probabilities are biquadratic:

Pr(�| ) = | h |�i |2.
This is Born’s Rule.

Depending on perspective, this seems like either a drastic or a trivial change. Instead,
it lies somewhere in between. Most of the basic structure of classical probability survives
the change from Pr = ~p · ~I to Pr = | h |�i |2. However, there is at least one far-reaching
di↵erence. Mixed states and events, which in both theories are by measures over pure states
and events, cannot be represented in quantum theory by convex combinations of elements
of the Hilbert space. This is because probabilities are not bilinear in Hilbert space vectors.
Instead, they are bilinear in the projectors onto those vectors:

Pr(�| ) = Tr[| ih | |�ih�|].
Mixed states are therefore represented by convex combinations of projectors or density ma-
trices :

⇢ =
X

k

pk | kih k|.
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General events are represented by positive sums of projectors or e↵ects :

Ei =
X

k

wk |�kih�k|.

And any set of events that sum to unity represents a set of mutually exclusive and exhaustive
events – i.e., a measurement or POVM (positive operator-valued measure):

M = {Ei} : Ei � 0,
X

i

Ei = 1l.

The far-reaching consequence mentioned above is that, although we began with a d-dimensional
Hilbert space, and therefore a repeatable measurement can have at most d outcomes, quantum
states form a set of dimension d2 � 1. Thus, there can be no single repeatable measurement
whose statistics uniquely identify arbitrary quantum states. This is in direct contrast with
the classical situation, and is the raison d’ètre for quantum tomography.

This rift between quantum behavior and classical intuition is usually ascribed to the
superposition principle (which states that any two distinct quantum states can be linearly
combined or “superposed” to produce additional states). This is not actually correct. Clas-
sical probability theory also obeys a superposition principle. Instead, the extra parameters
in quantum states stem directly from the quadratic form of Born’s Rule. Rather remarkably,
Born actually got this wrong in his seminal paper, stating in the main text that Pr = | h |�i |.
The correct formula is only stated in a footnote, added in the final proofs! (The necessity
for the quadratic form of Born’s Rule can be traced to the superposition principle, but only
with the additional caveat that every superposition of pure states must also be a pure state
– which is not true in classical probability theory. Another misconception is that it has
something to do with complex numbers. This is not true; quantum theory with real ampli-
tudes is well-defined, but actually slightly weirder than complex quantum theory. No truly
compelling argument for the existence of complex amplitudes is known.)

2.2.3 Technical formalism of quantum theory

In the previous two subsections, we (1) motivated the structure of quantum theory using
classical probability theory, and (2) motivated the details of quantum theory in direct con-
trast to classical theory. In this subsection, we abandon motivation and understanding, and
simply state the rules of quantum probabilities, in a form that is particularly useful for
presenting tomography results.

The structural properties of a quantum system are completely determined by associating a
Hilbert space with it, H = Cd. The dimension d is equal to the maximum number of outcomes
for any repeatable measurement on the system, and is therefore intrinsically subjective, and
should be viewed as a hyperparameter of a model for the quantum system, rather than a
real physical property of the system itself.
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States are represented by positive semidefinite trace-1 density matrices ⇢ : H ! H. Mea-
surement outcomes are represented by positive semidefinite e↵ect matrices E : H ! H. Mea-
surements or observations are represented by positive operator-valued measures (POVMs),
which are sets of e↵ects M = {Ek} that add to unity (

P
k Ek = 1l). All of these entities are

given meaning exclusively by Born’s Rule for probabilities, Pr(Ek|⇢) = Tr[Ek⇢].

It is very useful to represent these quantities using a mild generalization of Dirac’s no-
tation to describe Hilbert-Schmidt space. The system’s Hilbert-Schmidt space is the d2-
dimensional vector space of linear operators on H, denoted B(H) 2, equipped with the
Hilbert-Schmidt inner product

hhA|Bii ⌘ Tr[A†B].

Both states ⇢ and e↵ects E are elements of Hilbert-Schmidt space, and Born’s rule is very
conveniently written as an inner product:

Pr(Ek|⇢) = hhEk|⇢ii.

Since both states and e↵ects are Hermitian, we can almost always restrict focus to the
subspace of Hermitian operators, which is a d2-dimensional real vector space. In this case,
the † in the inner product is irrelevant.

Tomography is much concerned with describing experimental (and thus imperfect) quan-
tum logic gates. These are dynamical transformations of quantuym systems, usually called
quantum processes or quantum channels. When quantum systems experience reversible dy-
namics, their states evolve according to unitary transformations on H, which transform
density matrices as

⇢! U⇢U †.

This happens to be a linear map acting on ⇢, as it must be in order to preserve the convex
structure of probability. Irreversible dynamics can sometimes be modeled as a probabilistic
mixture of unitary dynamics,

⇢! G[⇢] =
X

i

piUi⇢U
†
i ,

but most generally, any linear map on density matrices can be realized as a dynamical
transformation,

⇢! G[⇢], where G[⇢1 + ⇢2] = G[⇢1] +G[⇢2],

as long as it satisfies two conditions:

1. G must be trace preserving (TP),

2. G must be completely positive (CP).

2Technically, this denotes bounded operators on H, and because boundedness is trivially true for all
operators on Cd, we ought to refer to it as L(H), the space of all linear operators on H. But for infinite-
dimensional spaces, B(H) and L(H) are distinct, and B(H) is the correct one. We therefore borrow, with
apologies, the more heavy-duty notation.
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Quantum dynamical transformations are thus described by completely positive, trace-preserving
linear maps, or CPTP maps. The TP condition is simple:

Tr (G[⇢]) = Tr[⇢].

The CP condition is a bit more fraught; it is a generalization of positivity (not to be confused
with positive semidefiniteness), which requires that

E [⇢] � 0 whenever ⇢ � 0.

But quantum dynamical process can act on parts of larger systems, while other parts are
left alone, and this motivates the strong condition that

(E ⌦ 1l)[⇢] � 0 whenever ⇢ � 0.

Somewhat surprisingly, there exist maps that are positive but not completely positive; the
canonical example is the single-qubit linear map that maps �z ! 0 but leaves �x, �y, 1l
unchanged. This “pancake map” is not physically possible.

There are at least three useful ways to represent a quantum process G. The first and
arguably most straightforward is to observe that density matrices are d2-dimensional vectors
in B(H), and any linear map on them is therefore a d2 ⇥ d2 matrix acting on B(H):

|⇢ii ! G |⇢ii.

This is the superoperator or Liouville picture of a quantum process. It is very useful for
tomography, because its matrix elements correspond directly to observable probabilities,
and the use of Hilbert-Schmidt space notation is natural. For example, the trace of an
operator is Tr(A) = Tr(1lA) = hh1l|Aii, and therefore

Tr (G[⇢]) = hh1l|G |⇢ii,

and so the TP condition is simply

hh1l|G = hhId| =) G† |1lii = |1lii.

The downside of this representation is that no simple statement of the CP condition is known.

Conversely, the Kraus representation of G is extremely well suited to enforcing complete
positivity. A quantum process G is CP if and only if it can be written as

G[⇢] =
X

i

Ki⇢K
†
i

for some set of Kraus operators {Ki}. The disadvantage of this representation is that while
the map G itself is linear, it is not a linear function of the Kraus operator parameterization
{Ki}. This makes it inconvenient for tomography.
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The Choi representation provides a useful compromise. It is closely related to the Kraus
representation, and represents G as

G[⇢] =
X

ij

�ijBi⇢Bj,

where the {Bi} are any desired orthogonal basis of matrices, and the Choi matrix of �ij

coe�cients define G with respect to that basis. The Kraus representation is simply the
diagonal form of the Choi representation, obtained by diagonalizing the � matrix. The CP
condition is simply that � � 0. Furthermore, G is linear in � rather than quadratic, which
makes it relatively well-suited to tomography.

2.3 Quantum state tomography

The purpose of quantum state tomography is to characterize a preparation procedure for a
quantum system S. The system has a d-dimensional Hilbert space, and it is assumed that
the preparation procedure can be described by a d ⇥ d density matrix ⇢. “Described by”
implies that there is no more successful way to predict subsequent measurements on S than
using Born’s Rule and ⇢. Given this assumption, the goal of quantum state tomography is
to estimate ⇢.

2.3.1 How tomography can go wrong

Before we go any further, it is worth noting that this ansatz is not absolutely reliable.
For example, one preparation procedure that may violate the assumption is: “Initialize the
system S by entangling it maximally with a distant reference system.” The e↵ect of this
preparation procedure may be described by the d⇥d density matrix ⇢ = 1

d
1l if and only if all

subsequent experiments on S do not involve the reference system. If the reference system is
involved, then this “reduced density matrix” is not su�cient to predict future experiments.
This situation lies outside the scope of [standard] quantum state tomography.

For another example, consider the following qubit preparation procedure: “If the number
of seconds elapsed since noon is even, prepare |1ih1|; if it is odd, prepare |0ih0|.” Again, the
system may be described by ⇢ = 1

2
1l – if and only if future experiments are guaranteed to be

performed at times that are uniformly distributed between “even” and “odd” time blocks.
(This is quite a strong restriction; most experimental designs have some accidental period-
icity built in). Otherwise, predicting measurements as well as possible requires additional
information about time that is not incorporated in the single density matrix ⇢.

So, when is the ansatz that underlies state tomography valid? It clearly applies when
many (N) instantiations of the system, prepared either in series or in parallel according to
the specified preparation procedure, are in some state ⇢⌦N . If ⇢ is pure, then this is all
the condition we need. If ⇢ is mixed, then we must address a foundational issue: mixed
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states are (as previously noted) intrinsically epistemic (describing knowledge rather than
reality) and are therefore subjective. Specifically, di↵erent observers may have di↵erent
knowledge available, and may justifiably assign di↵erent mixed states. In this particular
case, an observer who initially assigns ⇢⌦N might get access to an ancillary system that
provides additional information, and by making use of that information assign a new state
to the N copies that is not of the form ⇢⌦N . This rather complicated-sounding situation
merely generalizes the example given above, in which each sample was maximally entangled
with an ancilla. Clearly, to an observer with access to these “purifications” of the samples,
the samples would not be well-described by ⇢⌦N ! Both this situation and its generalized
counterpart can be ruled out by a single condition: we require not only that a well-informed
observer assign the state ⇢⌦N , but also that no other quantum systems correlated with the
samples are, or will become, available for the future measurements we are trying to predict.

These conditions are so restrictive that they never apply, strictly. The simplest and most
pervasive cause is that preparation procedures fluctuate over time. If the fluctuations were
strictly uncorrelated in time (i.e., white noise), this would be fine – the result of the fluctu-
ations would be merely to add entropy to ⇢. But this is never the case in real experiments;
noise processes don’t have perfectly flat spectral density, and this means that the time order
of samples is relevant. This breaks the ⇢⌦N form.

Fortunately, this is exactly the sort of thing that cryptographers worry about, and a
good theory for dealing with it has been developed in quantum cryptography under the
name of DeFinetti theorems. The theory lies outside the scope of this report, but a simple
summary of its implications for tomography is this: almost all nontrivial time-dependence
in the preparation procedure can be annihilated by randomly permuting the samples. As long
as the permutation is truly random, or at least unknown to the experimenters performing
subsequent measurements, this operation (whether active or passive) “twirls” arbitrary states
into statistical mixtures of ⇢⌦N (for various ⇢), or DeFinetti states. Once this is done,
tomography is justified. A more comprehensive discussion of this approach can be found in
Ref. [2], which was partially supported by this LDRD project.

2.3.2 Basic state tomography

In this discussion, we assume that tomography is justified – i.e., we have N samples of an
unknown ⇢, so their state is ⇢⌦N , but ⇢ is unknown. The goal of state tomography, then, is
to find out ⇢.

This is extremely simple in principle. Since ⇢ is a d⇥d Hermitian matrix, it is an element
of B(H) (the d2-dimensional Hilbert-Schmidt space), and can be written as |⇢ii. This can
be uniquely specified by knowing d2 distinct components

ck = hhMk|⇢ii, (2.1)

where the {hhMk|} are linearly independent elements of B(H). Since we already know that

hh1l|⇢ii = Tr⇢ = 1, (2.2)
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only d2 � 1 independent coe�cients are required to specify ⇢.

Perhaps the simplest example is single-qubit Pauli tomography. In this exercise, we
observe that the normalized Pauli operators

1p
2
{X, Y, Z, 1l}

form a complete orthonormal basis for the single-qubit B(H), and therefore ⇢ can be identified
by measuring or estimating the expectation values of the Paulis,

⇢ , {hXi , hY i , hZi} (2.3)

= {hhX|⇢ii, hhY |⇢ii, hhZ|⇢ii}. (2.4)

However, these expectation values cannot be measured directly. They are averages of a
measurement that always yields ±1. So instead the tomographer must estimate them, by:

1. Measuring each of the 3 Pauli operators on many distinct samples,

2. Collating the measurement results, and counting how many times each outcome is
observed,

3. Estimating each of the three expectation values from these data.

The simplest and most obvious way to estimate (e.g.) hZi is by the empirical expectation
value:

dhZi = n+ � n�

n+ + n�
, (2.5)

where n± is the number of times that Z = ±1 was observed (respectively).

2.3.3 Linear inversion tomography

The example given above provides a complete scheme for qubit Pauli state tomography,
but it is rather specific to (1) single qubit states, and (2) Pauli measurements. For a more
general picture, consider that ⇢ can be specified using any spanning set of expectation values
corresponding to any convenient complete basis of operators. And, while the Paulis are
elegant, they are not the operators whose expectation values are most directly inferrable. The
most directly observed expectation values are the Born’s Rule probabilities of measurement
outcomes:

pk = hhEk|⇢ii, (2.6)

whereEk = |�kih�k|, and the {�k} are the six eigenvectors of {X, Y, Z} (e.g. |+i , |�i , |0i , |1i ,
etc.)
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The set {Ek} is indeed a basis (overcomplete) for B(H), and so we can represent

⇢, {pk}

just as easily as we could represent ⇢ using the expectation values of Paulis. Furthermore,
it is even easier to obtain an estimate of pk from data; the obvious choice is

bpk =
nk

Nk

(2.7)

where nk is the number of times Ek was observed, and Nk is the number of times it could have
been observed – i.e., the number of times the measurement containing Ek was performed.
Note that Nk is not generally the total number of samples. For example, in qubit Pauli
tomography, three di↵erent measurements have to be made, so N samples will typically be
divided into three subsamples of size Nk = N/3.

A convenient way to simplify this situation is to treat all the {Ek} as outcomes of a single
POVM (positive, operator-valued measure). This single POVM corresponds to the following
measurement procedure: first, draw a classical random random number and use it to decide
which observable to measure; then, perform that measurement and record the outcome.
Mathematically, this means scaling each e↵ect (Ek) down by a factor proportional to Nk/N .
In the standard view, this is the fraction of the N samples on which the measurement
containing Ek was measured. In the “single POVM” view, it is the probability of performing
that measurement. These views are statistically equivalent, and the single-POVM view is
simpler; it permits us to simply estimate

bpk =
nk

N
, (2.8)

where N is the total number of samples.

Finally, given that the {pk} specify ⇢, and that the {bpk} are a reasonable estimate of
them, we need an algorithm to construct an estimate b⇢ of the state. The most straightforward
process is to solve the following set of linear equations:

hhEk|⇢ii = bpk. (2.9)

This can be done exactly if the e↵ects {Ek} are linearly independent, in which case it is
said that the performed measurements are “complete”, and form a “quorum”. This is the
motivating case for linear-inversion tomography.

If they are not linearly independent – i.e., there are more than d2 of them – then the
solution is overconstrained, and it is said that the performed measurements are “overcom-
plete”. In this case, we are forced to acknowledge that the {bpk} are only estimates – i.e.,
that in general pk 6= bpk. We will return to this important fact in the next subsection. How-
ever, linear inversion tomography is simple precisely because it ignores this fact, and the
simplest way to do so for overcomplete measurements is to (by fiat) choose the unweighted
least-squares solution to these linear equations.
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This solution can be found using simple linear algebra. To do so, we view the probability
distribution of the observed e↵ects as a vector in a vector space of probabilities, whose basis
vectors we denote |ii:

{pk} �! |pi ⌘
X

i

pi |ii. (2.10)

Now, Born’s Rule is simply
pk = hhEk|⇢ii, (2.11)

and by combining these two equations, we get

|pi =
X

i

|iihhEi|⇢ii (2.12)

= M |⇢ii (2.13)

where M ⌘ P
i |iihhEi|. Now, it seems painfully obvious that to find b⇢ from the {bpk}, we

need only compute
|b⇢ii = M�1 |bpi . (2.14)

For overcomplete measurements, M is not square and therefore not invertible, so in order to
find the least-squares solution we use the Moore-Penrose pseudo-inverse,

M�1 ⌘ �
M †M

��1
M †. (2.15)

This defines the linear inversion estimate of ⇢, the simplest of tomographic estimators.

2.3.4 Least-squares and maximum likelihood tomography

There are a number of problems with linear inversion tomography. All of them can be traced
to a simple fact: linear inversion tomography is based on the assumption that pk = bpk, which
is patently not true. The {bpk} are merely estimates of the true probabilities. For example,
consider a two-outcome measurement – which we may conceptualize as a flip of a biased coin
– and suppose it is performed just once. Assume, without loss of generality, that the “coin”
comes up heads. The linear inversion estimate would be bpheads = 1. This is (a) probably
not the correct value, and (b) rather an extreme conclusion to draw, as it implies that the
probability of tails is zero! Thus, linear inversion is based upon a fallacy, and should be
taken with a large grain of salt.

What conclusions should we draw from the data? This is a very deep question, encom-
passing most of statistical inference, and we do not even attempt to survey it here. Instead,
we merely observe that if the event described by Ek is observed nk times out of N trials,
then probably pk is approximately equal to nk/N . Why? Because we can compute the prob-
ability of observing nk events, and we find that if pk were very di↵erent from nk/N , then
this probability is very low. Even this rather vague statement requires a bit of clarification,
because we may (and often do) find that the probability of observing nk events is always
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rather small, no matter what pk is! But if we look at the relative probability of observing
what we actually observed, we find that it is much higher if pk ⇡ nk/N than otherwise.

This is an intuitive statement of the likelihood principle, which (as generally interpreted)
has two parts:

1. A theory (e.g., about pk) is plausible in proportion to the probability it predicts for
the data that were actually observed.

2. The likelihood function, L(p) ⌘ Pr(dataactually observed|p), contains everything about
the data that are relevant to inferring or estimating ~p.

These statements, while not provable, are sensible in many circumstances and underly most
forms of statistical inference (albeit with some major caveats and additions, especially in
Bayesian inference). They arguably motivate maximum likelihood estimation (MLE), which
(whatever else might be said about it) is simple, intuitive, and widely applicable. The MLE
estimator is simply:

bp = argmax (L(p)) . (2.16)

In other words, we choose the value of p that maximizes the probability of the actually-
observed data.

Interestingly, if MLE is applied to a coin-flip experiment (or to the data obtained from a
quantum 2-outcome measurement, in isolation), then it leads to precisely the same conclusion
as linear inversion:

bpMLE =
n

N
. (2.17)

So, at the simplest level, it justifies this choice. But when multiple experiments are combined
in a way that introduces constraints, MLE provides more flexibility. In quantum tomography,
this provides an elegant way to deal with overcomplete measurements. Overcompleteness
means that no b⇢ can fit all the observed frequencies exactly. This is a constraint on the
possible values of the {pk}, and MLE handles it with aplomb. Unfortunately, except in
special cases, there is no closed form solution to Eq. 2.16. It must be found by numerical
optimization (fortunately, this is at least e�cient; the likelihood function for quantum state
tomography has convex level sets, so it can be maximized in poly(d) time.)

MLE solves – or at least addresses – another problem that bedevils linear inversion: neg-
ativity. Because the observed nk are not generally given by Npk, but are instead binomially
distributed around it, the data exhibit finite sample fluctuations – and therefore so does the
linear inversion estimate. If the true state lies close enough to the surface of the convex set
of states in B(H), these fluctuations can (and in some cases almost certainly will) cause the
linear inversion b⇢ to fall outside the set of positive density matrices! When this occurs, b⇢ has
negative eigenvalues, which in turn correspond to negative probabilities for some measure-
ment outcome. This is a rather serious conceptual problem. Moreover, it wreaks havoc with
the calculation of entropic quantities (which tend to involve logarithms of the eigenvalues),
and casts serious doubt on the reliability of the estimator in general.
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MLE embodies a simple fix for negative estimates. If the domain of L(⇢) is taken to
be all of B(H) (subject to the trace=1 constraint), then it yields very similar results to
linear inversion (see “least squares” discussion below). But by simply restricting the domain
of L(⇢) to only include valid density matrices – i.e., those with positive eigenvalues – we
can ensure that argmax(L(⇢)) is always a valid state! This removes any possibility of even
approximating b⇢MLE analytically, since the positivity constraint is complicated, but numerical
methods still work.

MLE thus solves some of the problems with linear inversion; it is statistically well-
motivated, it deals gracefully with overcomplete data, and it can be constrained to report
a valid state. However, it retains a variety of pathologies, many of them stemming from
the “zero eigenvalue problem”. This was first presented in Ref. [3], which remains perhaps
the best reference. Stated concisely, it is the fact that whenever linear inversion returns a
b⇢ with negative eigenvalues, MLE will produce a b⇢ with at least one zero eigenvalue. This
corresponds to a zero probability for some measurement, which is di�cult to justify from
finite data. It also presents problems for error bars, since it’s di�cult to argue that a proba-
bility is given by p = 0±�p. This issue is partly resolved in [4], where it is argued that the
correct interpretation of the likelihood principle is not as a justification of MLE, but rather
as motivating region estimators containing all high-likelihood states. However, this is also
outside the scope of this report.

We conclude this section by pointing out that, although MLE generally requires numerical
optimization, it can be analyzed rather nicely in the N ! 1 limit of very much data. The
central limit theorem takes hold in this limit, and the likelihood function converges to a
Gaussian form. In this limit, if the positivity constraint is ignored (or if it is irrelevant
because the maximum of the unconstrained L(⇢) happens to be non-negative), then MLE
reduces to a weighted least-squares problem that can be solved using linear algebra. If
the positivity constraint (⇢ � 0) is relevant, then analytic techniques break down (the
corresponding unweighted least-squares problem does have a semi-analytic solution [5], but
weight factors break it), but the numerical maximization is much easier than in the general
MLE case.

It is well worth noting that the weighted least-squares approximation to MLE is not
an arbitrary one. In fact, it is precisely minimum �2 estimation, because as N ! 1, the
likelihood function approaches

L(⇢) ! e��2(⇢). (2.18)

The �2 function, in this context, is a function of (a) the probabilities pk implied by ⇢ and
the observed frequencies fk = nk/N , and it is given by

�2(⇢) = �2({pk}, {fk}) =
X

k

(pk � fk)2

pk
. (2.19)

This equivalence is extremely useful for a variety of problems when N � 1.
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2.4 Quantum process tomography

Quantum information processing relies far less heavily on precise preparations of quantum
states than it does on precisely implemented quantum gates. In fact, state preparation can
easily be described as just a particular kind of logic gate – one that, instead of transforming
an existing d-dimensional state into another one, transforms a trivial 1-dimensional state
into a particular d-dimensional one.

For this reason, quantum process tomography is far more important than state tomogra-
phy. Fortunately – both for the relevance of state tomography, and for the theory of process
tomography – the two are close cousins. Virtually every general feature of state tomography
maps to an equivalent feature of process tomography. In fact, even the precise details are in
close correspondence, because of the Choi-Jamiolkowski isomorphism.

2.4.1 The Choi-Jamiolkowski isomorphism

The CJ isomorphism states that the set of (CPTP) quantum processes on a d-dimensional
system is in 1:1 correspondence with a subset of the quantum states on a d2-dimensional
system. The isomorphism is explicit: for each CPTP process G acting on B(H), there exists
a corresponding Jamiolkowski state ⇢J(G) on H⌦H. (In fact, the CJ isomorphism can also
be seen as a correspondence between B(H) and H⌦H, which incidentally can be applied to
densities over these spaces). It is given by:

⇢J(G) = (G⌦ 1l)[| ih |], (2.20)

where | i is the symmetric maximally entangled state on two copies,

| i = 1p
d

d�1X

j=0

|ji ⌦ |ji. (2.21)

To see that this is indeed an isomorphism, represent G in Choi form:

G[⇢] =
X

ij

�ijBi⇢Bj, (2.22)

and choose the basis {Bi}i=1...d2 to be the matrix units {|↵ih�|}↵,�=1...d, so that

G[⇢] =
X

↵,�,�,�

�(↵,�),(�,�) |↵ih�| ⇢ |�ih�| (2.23)

=
X

↵,�,�,�

�(↵,�),(�,�)⇢�,� |↵ih�|. (2.24)

Now, observe that

| ih | = 1

d

d�1X

i,j=0

|iihj|⌦ |iihj|,
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and so the Jamiolkowski state is

(G⌦ 1l)[| ih |] =
1

d

X

i,j,↵,�,�,�

�(↵,�),(�,�)�i,��j,� |↵ih�|⌦ |iihj| (2.25)

=
1

d

X

↵,�,�,�

�(↵,�),(�,�) |↵ih�|⌦ |�ih�| (2.26)

=
1

d

X

↵,�,�,�

�(↵,�),(�,�) |↵�ih��| (2.27)

' �. (2.28)

In other words, the elements of ⇢J and the � matrix that defines G are identical up to a
factor of 1/d, and so each is a description of the other.

The CJ isomorphism is responsible for the general similarities between state and process
tomography. For example, the CP constraint on G is isomorphic to the positivity constraint
⇢J � 0. Processes are slightly more constrained, however; the equivalent to the trace con-
straint Tr⇢ = 1 is the more powerful TP constraint G†[1l] = 1l. This is a linear constraint on
not one but d2 matrix elements of G (or its corresponding �), so whereas a general state on
H⌦H has d4 � 1 free parameters, a CPTP map has only d4 � d2 parameters.

But it is worth mentioning that the CJ isomorphism can be used to establish a direct
correspondence between state and process tomography, at least in principle, in what is known
as ancilla-assisted process tomography. It is very simple: to do tomography on G, we simply
prepare a many samples of the maximally entangled state | i between the system and an
ancilla, apply G to them (to prepare ⇢J) and then do tomography on the resulting bipartite
states. In practice, this is extraordinarily impractical.

2.4.2 Mathematical formalism of process tomography

In practice, process tomography is performed not by applying G to a single entangled state,
but by preparing a variety of states {⇢j}, applying G to them, and then doing state tomog-
raphy on the resulting output states ⇢0j = G[⇢j]. In principle, this provides a set of linear
equations

G |⇢jii =
��⇢0j

↵i, (2.29)

and these can be solved if the {⇢j} form a complete (spanning) basis for B(H). However,
while this is conceptually simple, it is more useful to break the state tomography down into
individual experiments. Doing state tomography on ⇢0j means measuring many samples, and
thus estimating various probabilities of the form

pk|j =
⌦hEk|⇢0j

↵i (2.30)

= hhEk|G |⇢jii (2.31)

= Tr [|⇢jiihhEk|G] . (2.32)
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Stated this way, the problem looks very similar to state tomography – the final equation is
simply an inner product in the vector space of superoperators, which is O(d4)-dimensional.
The only di↵erence is that the “e↵ects” in process tomography are not Hermitian (or sym-
metric, technically, as B(H) is a real space), being of the form |⇢jiihhEk| rather than |�kih�k|
as in state tomography.

In any case, this form permits every technique used for state tomography to be brought
to bear on process tomography directly. Linear inversion, least squares, MLE, and other
estimators can be applied. Theories that suggest what POVMs are most e↵ective for ex-
tracting information about unknown ⇢ can be repurposed to construct experimental designs
(i.e., {|⇢jiihhEk|}) that are most e↵ective at extracting information about unknown processes.

However, there is one very important di↵erence between processes and states. For states,
experiments that probe Tr[Ek⇢] are the only ones possible. But processes, unlike states, can
be composed. If we can apply G, then we can apply G twice in a row – which means applying
G2. Or, if we desire, G99. And this means we can estimate probabilities like

Pr = hhEk|G99 |⇢jii,

which have no equivalent in state tomography (because ⇢2 or ⇢99 is a meaningless object).
This capability is extremely important for gate-set tomography.
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Chapter 3

Gate-set tomography and the LGST
algorithm

3.1 Motivation

We developed gate-set tomography (GST) to address one serious problem with standard
state and process tomography: characterizing an unknown state or process using
tomography requires the use of known measurement, states, and/or processes.
Moreover, if the tomographer is wrong about what these reference objects are, then the
tomographic estimate will be wrong too (and often undetectably so).

In the case of state tomography, the reference objects on which we rely are the e↵ect
operators {Ek} describing measurement outcomes. It is assumed that we know what operator
Ek corresponds to an observation labeled “k”, and therefore how to invert the observed (or
estimated, to be precise) probabilities pk = hhEk|⇢ii.

In the case of process tomography, we rely on prior knowledge both of the measurement
e↵ects {Ek} and of the input states {⇢j}. However, it’s only really necessary to know what
we are measuring; given this knowledge, state tomography can be used to characterize the
{⇢j}.

In practice, very few qubit technologies admit multiple distinct measurements natively.
Instead, there is usually just one measurement that can be performed – often with only two
outcomes – and other measurements are implemented by (1) applying some unitary gate
U , and (2) performing the fixed “native” measurement. This means that when we rely on
multiple precalibrated measurements, we are actually relying primarily on certain knowledge
of the gates or operations used to implement those measurements.

This makes standard process tomography perilously circular. It is, after all, the tool used
to characterize gates. . . but it relies on precalibrated gates, which must have been calibrated
using process tomography. The entire framework of quantum gate characterization begins
to look like an infinite sequence of turtles, all the way down.

Fortunately, it is not. This should come as no surprise to experimentalists, who have
developed various methods to characterize gates without tomography. It is possible, both in
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practice and theory, to characterize quantum gates self-consistently and without any prior
calibration. This is what GST does.

3.2 Foundations

GST begins from the premise that all operations on the system of interest (generally a single
qubit) are unknown and untrusted. We treat it as a black box, purportedly containing a
qubit or other quantum system, with a very limited control interface. The following controls,
aka “buttons”, are available:

1. A button that initializes the system in an unknown state ⇢.

2. A button that performs an unknown 2-outcome measurement M = {E, 1l � E}, and
causes one of two labeled lights to flash depending on which outcome was observed.

3. Several buttons that apply unknown quantum operations {G1, G2 . . .}.

Collectively, these operations (including state preparation and measurement, aka SPAM )
form the gate set that is available to control the system – and which, in practice, define and
describe its QIP capabilities.

The one major assumption made in GST is that each of these buttons can be associated
to a quantum operation – a density matrix, POVM, or CPTP map, respectively. This seems
rather uncontroversial (and it is certainly no stronger than the assumptions always made
in standard tomography!), but experiments have shown that it is surprisingly unreliable.
Experimental quantum hardware, at least at the current stage of maturity, exhibits de-
tectable levels of non-Markovian noise (including but not limited to systematic drift) which
violate this paradigm. For the purposes of this report, however, we will perservere with the
assumption of Markovian quantum operations.

For convenience, we typically also make an assumption about the system’s Hilbert space
dimension d. This fundamental parameter determines the size of the vectors and matrices
used to describe the elements of the gate set. However, it does not need to be assumed; it is
possible to determine the system’s e↵ective Hilbert-space dimension (or, more precisely, the
dimension of the Hilbert-Schmidt state space that it explores) dynamically from the data,
using model selection techniques if necessary. We have not implemented this technique in
experiments yet, so it remains outside the scope of this report. In this document, unless
otherwise specified, we generally set d = 2.

3.2.1 Gate sets

A gate set is a tuple: {⇢, E,G1 . . . GK}, where ⇢ and E are vectors in Hilbert-Schmidt space,
and the Gk are operators on it. Gatesets are predictive theories about how a black-box
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quantum device operates. Collectively, the set of all possible gatesets is a model for the
black box.

We interact with and observe a black box by performing experiments on it. In GST, an
experiment comprises a sequence of operations in which the first is always initialization, the
last is always measurement, and between them a sequence of zero or more Gk is applied.
Experiments are thus labeled by quantum circuits, or gate sequences, S = {s1, s2 . . . sL}.
Unless otherwise specified, L denotes the length of a gate sequence. For each experiment, E
or 1l� E is observed with respective probability pS or 1� pS, where

pS = hhE|Gs
L

Gs
L�1 . . . Gs2Gs1 |⇢ii. (3.1)

Each such probability can, of course, be estimated to any desired precision by repeating the
corresponding experiment many times.

The basic principle behind GST is that each experiment whose probability is known
provides some information about the gate set. More precisely, it constrains a single scalar
parameter. A gate set has at most 2(d2� 1)+K(d4�d2) = Kd4� (K� 2)d2� 2 parameters
(just from counting matrix elements and constraints), so in principle we should be able
to infer the entire gate set from roughly that many empirically estimated probabilities for
distinct experiments. And, indeed, this is mostly correct. To perform GST, we choose a set
of experiments {Si}, repeat each one enough times to estimate the corresponding pS

i

, and
reconstruct the entire gate set from these probabilities.

3.2.2 The gauge

The one main caveat is that no set of experimentally observable probabilities is su�cient
to nail down the entire gate set. This is because gate sets have a gauge. That is, there
are distinct gate sets – entire families, in fact – that are categorically indistinguishable
using any experiment. Such families actually all represent the same physical device. The
gauge freedom merely represents di↵erent ways of representing the same gate set. Some
of the parameters in the gate set correspond directly to gauge freedoms, and since they
have no physical consequence or meaning, they of course cannot be inferred from empirical
observations. This also means, fortunately, that the tomographer is free to choose any
convenient gauge.

It is not easy to divide gate set parameters into gauge and gauge-invariant sets (in fact,
we flatly don’t know how to do this). However, it is easy to state the full group of gauge
transformations. Consider a gate set {|⇢ii, hhE| , {Gk}} in which the Gk are m⇥m matrices
(generally m = d2, but other state spaces are possible). Let T be a real invertible m ⇥ m
matrix, and consider the (generally di↵erent) gate set

{|⇢0ii, hhE 0| , {G0
k}} = {T |⇢ii, hhE|T�1, {TGkT

�1}}. (3.2)
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This transformation leaves every observable probability unchanged:

p0S = hhE 0|G0
s
L

G0
s
L�1

. . . G0
s2
G0

s1
|⇢ii (3.3)

= hhE|T�1TGs
L

T�1TGs
L�1T

�1 . . . TGs2T
�1TGs1T

�1T |⇢ii (3.4)

= hhE|Gs
L

Gs
L�1 . . . Gs2Gs1 |⇢ii (3.5)

= pS. (3.6)

This is an action of GL(m), a Lie group with m2 parameters, so there are (in general) m2

gauge parameters in the gate set.

Since gauge transformations have no observable e↵ect, there is no reason not to choose the
most convenient gauge. The point of GST, of course, is to report a gate set that accurately
describes the experimental device and predicts its future behavior, and any gauge would (by
definition) serve equally well for this purpose. But in almost all cases, the experimentalist or
tomographer has some pre-existing expectation of what the device is supposed to do, which
is represented by a target gate set. Target gate sets are usually idealized (e.g., ⇢ and E are
projectors, and the Gk are unitary), but one of the critical questions GST should answer is
“How close is the device to the target?” followed closely by “What are the most significant
discrepancies between the estimate and the target?” Gauge transformations on the estimate
can have huge e↵ects on the answers.

For example, consider the target gate set T = {⇢ = |0ih0| , E = |1ih1| , G1 = GX}, where
GX is the superoperator corresponding to ⇢ ! �x⇢�x. Any unitary change of basis is a
valid gauge transformation, so the targets are gauge-equivalent to T 0 = {⇢0 = |+ih+| , E =
|�ih�| , G1 = GZ}, where GZ [⇢] = �z⇢�z. If an experimentalist intended to produce T ,
but the tomographer reports the [equivalent] gateset T 0, then by all the obvious metrics the
device is wildly out of spec. Of course, this is merely a misunderstanding resulting from
di↵erent choices of gauge. To avoid such communication failures, it is necessary that all
parties agree on a shared gauge.

Unfortunately, we do not know of any suitable way to specify “a gauge”. Instead, in
GST, we allow the target gateset to define the gauge. Given a GST estimate in an arbitrary
gauge, we optimize the gauge to the targets by using gauge transformations to make the
estimate as similar as possible to the target. More precisely, we attempt to find the gauge
transformation that minimizes the total Euclidean distance between all the matrix/vector
elements of (a) the gauge-transformed estimate, and (b) the target. Numerical experiments
show that a local gradient optimization almost always finds the global optimum, provided
that the gates are not completely di↵erent from the targets (so that the initial guess is
reasonably good).

Gate sets should obey certain positivity constraints. In order to ensure that negative
probabilities are not predicted, we generally demand that ⇢ and E are positive semidefinite,
that Tr⇢ = 1 and E  1l, and that each of the Gk is completely positive and trace-preserving.
A gateset satisfying these conditions is explicitly CPTP. But gauge transformations do not,
in general, respect positivity. Their precise e↵ect on positivity depends on what gateset
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is being transformed. At one extreme, if each element of the gateset is strictly positive
(i.e., does not lie on the boundary of its positivity constraint), then every su�ciently small
gauge transformation (i.e., T = 1l + ✏Q for any matrix Q and ✏ su�ciently small) preserves
positivity. But if the gateset is maximally extreme – i.e., ⇢ and E are rank-1, and each Gk

is unitary – then the only gauge transformations that preserve positivity are basis changes,
i.e., those corresponding to T such that T [⇢] = U⇢U † for some unitary U .

In general, the interaction between gauge transformations and positivity is complex and
messy. Given an explicitly CPTP gateset, the subgroup of unitary gauge transformations
will always preserve its positivity, but other directions in the Lie algebra generating GL(m)
are truncated – small transformations may preserve positivity, but su�ciently large ones
produce a gateset that is not explicitly CPTP. The harder problem is, given a gateset that
is not explicitly CPTP, to determine whether it is gauge-equivalent to one that is. Such a
gateset is implicitly CPTP, and at this time we know of no e�cient and reliable algorithm
for testing for this condition.

3.3 Linear inversion GST (LGST)

The GST framework was invented and fully fleshed out at Sandia National Labs, but a
significant subset of ideas comprising GST can be traced back to work at IBM Research circa
2012 (see Ref. [6]). The IBM researchers realized the vulnerability of standard tomography
to calibration errors, and observed that observable probabilities can always be written as
expressions of the form pS = hhE|G . . . |⇢ii. In order to fit data, they proposed a brute-force
maximum likelihood approach. Given a gateset G = {⇢, E, {Gk}}, and a dataset described
by {ns, Ns} (where experiment S was performed NS times, and “E” was observed nS times),
the likelihood is easy to compute:

L(G) =
Y

S

pnS

S (1� pS)
N

S

�n
S . (3.7)

The IBM group proposed (and implemented) an exhaustive set of experiments corresponding
to all gate sequences of 3 or fewer gates. To analyze this data, they maximized the likelihood
function numerically using local optimization algorithms.

As they discovered, the likelihood function is not nice. It is strongly not quasi-convex
(i.e., its level sets are not convex), and therefore cannot be reliably or e�ciently maximized
using standard methods. This stems largely from two causes: (1) the probabilities for the
experimental observations are not linear functions of the parameters (in contrast to the
situation in state or process tomography), and (2) the existence of the gauge group produces
a very significant degeneracy in the maximum of the likelihood (instead of a unimodal “hill”,
a plot of the likelihood would resemble an assortment of winding “ridges”, whose crest is
perfectly level and traces out an orbit of the gauge group). As a result, the algorithm
proposed by the IBM group relies rather critically on a good initial guess for the gates.
Without a good initial guess, there is significant risk that it will end up in a local maximum.
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We solved this problem by introducing linear inversion GST, or LGST. In the taxonomy
of standard tomography, linear inversion is the oldest and most primitive method, largely
replaced by MLE. For self-calibrating methods (including GST and IBM’s “overkill” tomog-
raphy), the relationship is partly reversed; LGST solved significant problems associated with
brute-force maximum likelihood.

LGST is nontrivial precisely because experiments’ probabilities are not linear in the
gateset. The simplest experiment is the SPAM experiment:

pSPAM = hhE|⇢ii,

and even this experiment is quadratic in the gate-set parameters. Fully characterizing the
gateset requires far more information, which requires longer circuits, and ensures more non-
linearity.

To overcome this issue, LGST demands a specific set of experiments. The structure of
this set guarantees a closed-form solution to the tomographic inversion problem – and, while
the solution is not linear, it requires only linear algebra. LGST actually resembles standard
process tomography rather closely, except that where process tomography relies on known
probe states and measurements, LGST makes do with unknown ones.

3.3.1 The LGST protocol

We begin by choosing a set of n = d2 fiducial sequences {Fi}, which are short gate circuits
whose role is to transform the system’s initial state ⇢ into a quorum of di↵erent input states
and to transform the fixed measurement e↵ect E into a quorum of distinct e↵ects Ei:

|⇢jii = Fj |⇢ii, (3.8)

hhEi| = hhE|Fi. (3.9)

Both sets should span B(H). Since we do not know ⇢ or the Gk in advance, we cannot
guarantee that this will happen. Fortunately, it is possible to test for this condition after
seeing the data, so if incomplete fiducials are chosen by accident, we can change them and
redo the experiment.

Now, so equipped, we perform each of the n2(K + 1) experiments

hhE|FiG1Fj |⇢ii (3.10)

. . . (3.11)

hhE|FiGKFj |⇢ii (3.12)

hhE|FiFj |⇢ii, (3.13)
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repeating each of them enough times to estimate the corresponding probability. We arrange
these probabilities into matrices as

(G̃k)ij = hhE|FiGkFj |⇢ii, (3.14)

and also define
1̃lij = hhE|FiFj |⇢ii. (3.15)

The LGST estimate of each gate is constructed as

Ĝk = 1̃l
�1
G̃k. (3.16)

To obtain estimates of ⇢ and E, we perform additional experiments

hhE|Fi |⇢ii, (3.17)

whose estimated probabilities are arranged into vectors

|⇢̃ii =
X

i

hhE|Fi |⇢ii |iii, (3.18)

D
hẼ

��� =
X

j

hhE|Fj |⇢ii hhj|, (3.19)

and then the LGST estimates are

|⇢̂ii = 1̃l
�1 |⇢̃ii, (3.20)D

hÊ
��� =

D
hẼ

��� . (3.21)

These LGST estimates are in an arbitrary gauge, so the final step before publishing an
estimate of the gateset is to perform gauge optimization to maximize similarity to the target
gates. (Note that the targets only appear at this stage – they only influence the gauge, not
any physically meaningful aspect of the estimate).

3.3.2 Why LGST works

Now, let us show that this actually works. To do so, let us suppose for a moment that N
(the number of repetitions of each experiment) is taken to infinity, and so the estimated
probabilities are exactly correct. In that case, it is true that

G̃k =
X

ij

hhE|FiGkFj |⇢ii |iiihhj| (3.22)

=
X

ij

|iii hhE|FiGkFj |⇢ii hhj| (3.23)

= AGkB, (3.24)
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where the A and B matrices are defined as

A =
X

i

|iiihhEi| (3.25)

B =
X

j

|⇢jiihhj| (3.26)

using |⇢jii ⌘ Fj |⇢ii and hhEi| ⌘ hhE|Fi. Similarly, it is clear that

1̃l = AB (3.27)

|⇢̃ii = A |⇢ii (3.28)D
hẼ

��� = hhE|B, (3.29)

and since Ĩd
�1

= (AB)�1, we find that

Ĝk = B�1GkB (3.30)

|⇢̂ii = B�1 |⇢ii (3.31)D
hẼ

��� = hhE|B. (3.32)

Thus, the estimate is gauge-equivalent to the true gateset (again, in the absence of finite-
sample fluctuations). Moreover, we can even obtain a good guess as to the correct gauge by
using the target gateset to define

Btarget =
X

j

F (target)
j

���⇢(target)j

E
ihhj|, (3.33)

and gauge-transforming the initial estimates by Btarget.

3.3.3 Fiducial sequences: completeness and overcompleteness

LGST’s key element is the use of fiducial sequences ({Fi}) to implement diverse input states
and measurements. The resulting sets {⇢j} and {Ei} are supposed to be informationally
complete (IC), which means that they span B(H). Moreover, they should should be close
to uniformly informationally complete (UIC), which means that there is no element of B(H)
that is nearly orthogonal to all of them. Both the state- and e↵ect-sets are acting as frames
(non-orthogonal generalizations of orthogonal bases); 1̃l is the corresponding frame operator,

and the multiplication by 1̃l
�1

undoes the distortion caused by non-orthogonality in the
frame.
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Of course, the whole point of GST is that we don’t know the gate set in advance, and
so there’s no way to ensure that any given set of fiducials produces state- and e↵ect-sets
that really are close to UIC (or even IC). Fortunately, it’s easy to check ex post facto. We
simply diagonalize 1̃l, and examine its eigenvalues. It is full-rank i↵ the sets are IC. UIC
implies that none of its eigenvalues are close to zero. It should be intuitively obvious that

small eigenvalues in 1̃l are a problem, since they yield large eigenvalues in 1̃l
�1
, which in turn

amplify any finite-sample error that is present. In a perfect world, 1̃l would be proportional
to the identity operator; in practice, this is not achievable because both the {|⇢jii} and the
{hhEi|} are heavily biased toward the |1lii vector in B(H). The best achievable behavior is
achieved when the state- and e↵ect-sets are rank-1 projectors that form 2-designs for the
system’s Hilbert space (see Ref. [7] for a reasonably painless introduction to frame theory
and 2-designs for quantum tomography).

While there exist single-qubit 2-designs comprising just d2 = 4 states, the best-known
(and easiest to implement) comprises 6 states. They are the eigenstates of the three Pauli
operators {X, Y, Z}, and they form a full set of mutually unbiased bases. Since the native
gates in most qubit experiments are precisely the Cli↵ord operations that generate these 6
states, it’s very tempting to use them as state- and e↵ect-sets. For the [extremely popular]
target gateset defined by

⇢ = |0ih0| , E = |1ih1| , Gx = e�i⇡4 �x , Gy = e�i⇡4 �y ,

this is achieved by the fiducial sequences

F1 = {}, (3.34)

F2 = Gx, (3.35)

F3 = Gy, (3.36)

F4 = GxGx, (3.37)

F5 = GxGxGx, (3.38)

F6 = GyGyGy. (3.39)

The only problem with this whole scheme is that now there are six fiducials. The LGST
protocol given above assumed n = d2, in which case the {⇢j} and {Ei} are linearly indepen-
dent vectors in B(H). With n > d2 fiducials, these sets are overcomplete – they should still
span B(H), but are not linearly independent. The A and B matrices are 6 ⇥ 4 and 4 ⇥ 6,
respectively, and all the G̃k are 6⇥ 6. 1̃l is also 6x6, but since it is the Gram matrix for sets
of vectors lying in a 4-dimensional space [B(H)], its rank should be only 4.

Overcomplete fiducials add some complications to LGST, but they are also very useful.
They allow us to test our assumption that the system is described by Markovian operations
on a d-dimensional Hilbert space. If the rank of 1̃l is greater than d2, then it is a clear
sign that the LGST experiments are exploring a larger state space than expected. This is
not entirely unexpected; it can be caused by leakage levels, coupling to ancillary qubits, or
non-Markovian noise.
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Generically, finite-sample errors will cause 1̃l to be full-rank (even if all model assumptions
are perfectly satisfied). Heuristically, we can simply look at its spectrum to see whether
there are d2 “large” eigenvalues and n � d2 “small” ones that are explainable by finite-
sample fluctuations. A more rigorous procedure is to use model selection techniques to test
whether 1̃l’s rank is significantly greater than d2. If it is, then the qubit is out of spec, and
manual reconsideration is required. Typically, we either proceed with LGST to obtain the
best possible d-dimensional model of the data (current practice), or we use model selection
techniques to choose an appropriate dimension d and re-analyze (under development).

The simplest way to proceed (whether or not the system passes the “rank-d2” test)

is to truncate all of the empirical vectors and matrices (1̃l, G̃k, |⇢̃ii,
D
hẼ

���) to a suitable

d2-dimensional subspace, and then proceed as described above. Currently, we do this by
performing an SVD on 1̃l and selecting the singular vectors corresponding to the d2 largest
singular values. More sophisticated methods, involving the Moore-Penrose pseudo-inverse of
A and B, are under development. Simulations and experiments show that our current SVD-
based approach works very well, although theory indicates that it is moderately suboptimal.

3.4 Contraction to deal with CPTP-violations caused

by finite-sample errors

As shown above, LGST characterizes the device perfectly – if the probabilities for the spec-
ified experiments can be measured exactly. Unfortunately, they can’t. When a 2-outcome
experiment is performed N times, and one outcome is observed n times, the natural estima-
tor of its probability is p̂ = n/N . This is the best possible unbiased estimator, but n is not
generally equal to pN . Instead, it is binomially distributed around it:

n = pN ±
p

p(1� p)
p
N.

Therefore, p̂ will fluctuate by ±p
p(1� p)/

p
N around the true value of p. This unavoidable

estimation error is known as finite sample fluctuation.

The obvious consequence of finite-sample fluctuations is that the estimated gateset will
not be identical to the true one. Each matrix element will typically be o↵ by O(1/

p
N). This

is not in itself a terribly big deal, but matters are complicated by the fact that if the true
gateset is close enough to a boundary – i.e., one or more of its elements has an eigenvalue
smaller than the fluctuations – then there is a high probability that the estimated gateset
will violate positivity.

When this happens, the tomographer has several choices. The easiest is to do nothing,
and report the nonpositive gate set. In some cases, this is perfectly fine, but if and when the
estimated gateset is used to predict future experiments, it may predict negative probabilities.
This is a serious problem whenever entropies, fidelities, or failure probabilities are calculated.

A second choice is to modify the gauge-optimization step. Instead of varying the gauge
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to make the estimated gates as close as possible to the targets, we can instead minimize
their negativity (the sum of the negative eigenvalues of the various gates). We call this
optimizing toward CPTP, since it attempts to minimize the distance to the set of explicitly
CPTP gatesets. It is much more di�cult than optimizing to the targets, because the set
of explicitly CPTP gatesets is not convex, and is not in any way congruent to the orbits
of gauge transformations. Global optimization is required. When the true gates (or the
estimate) are not actually close to the targets, this strategy can be very valuable, and can
result in estimates that are far less negative than those obtained by optimizing to the (wrong)
target. However, it can also introduce severe pathologies (although we have not observed this
to happen yet). It may occur that the estimate is quite close to the target but non-positive
due to fluctuations, and also happens to be gauge-equivalent to an explicitly CPTP gateset
that is far from the target. In this case, successful gauge optimization to CPTP will find the
far-away but explicitly CPTP gateset, and lead to the erroneous conclusion that the true
gates are not close to the targets.

A third option is to contract the gateset, forcing it to be CPTP. This is always done
after a gauge optimization either toward CPTP or toward a specific CPTP target, in order
to ensure that the pre-contraction gateset is not very negative (i.e., not far from the CPTP
set). Then, the estimate is projected to the nearest CPTP gateset. This is done in three
steps:

1. ⇢ and E are contracted to the nearest valid state and e↵ect as measured by Hilbert-
Schmidt (Euclidean) distance,

2. Each of the Gk is written in Choi form (where violations of CP correspond to negative
eigenvalues of the � matrix), and then contracted to the nearest valid CP map, as
measured by Euclidean distance, and transformed back to the superoperator represen-
tation.

3. Finally, each of the resulting Gk is projected linearly onto the a�ne hyperplane of TP
maps (since TP is a linear constraint on the superoperator).

A simple algorithm for finding the nearest positive matrix in Hilbert-Schmidt distance is
given in [5].

We make use of the 1st solution for intermediate steps (see next chapter), and the 3rd
for final estimates that must be physically valid gatesets to avoid negative probabilities,
imaginary entropies, and the like. The second solution (optimizing to CPTP) is useful only
when the estimate is very bad in the first place (generally because the gates are far from the
targets). However, none of these solutions are fully satisfactory. What is really needed is an
explicitly gauge-invariant parameterization of gate sets, but we have not yet found one.
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Chapter 4

Hyperaccurate GST using long
circuits

GST was invented to solve a specific problem, the reliance of tomography on precalibrated
operations. LGST solved this problem. To make it work, we needed to develop analysis
methods that could deal with “nonlinear data” – that is, results of experiments whose prob-
abilities are highly nonlinear functions of the parameters. By resolving this problem, we
opened the road to a completely di↵erent – and genuinely revolutionary – improvement in
tomography.

Standard process tomography characterizes a gate G using experiments in which G ap-
pears just once. This makes analysis easy, but it also limits the precision that can be achieved.
Each matrix element of G corresponds more or less 1:1 to an observed probability, and the
estimation error in each such probability (due to finite sample fluctuations) is approximately

p̂ = p± O(1)p
N

.

As we show in Chapter 5, it is possible under some circumstances to improve this scaling to
O(1)/N , but while this can o↵er substantial improvements, it is still limited by SPAM noise,
as it relies on choosing experiments for which p ⇡ 0. Fortunately, GST o↵ers a completely
di↵erent way to break the 1/

p
N boundary, and achieve what we refer to as hyperaccuracy.

The key idea here is that in GST, we can quite easily perform and incorporate data from
long circuits, in which a gate appears many times. The sensitivity of the corresponding
probability to the elements of Gk increases proportional to the number of times Gk appears
in the circuit. So, for example, if we estimate the probability for

Pr = hhE|GxGxGxGx |⇢ii,
then it will provide 4 times as much precision in estimating Gx as would

Pr = hhE|Gx |⇢ii.
However, in order to turn this idea into a practical, reliable algorithm, we need to address
several critical questions:

1. What experiments (circuits, or gate sequences) should be performed?
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2. How can the resulting data be e�ciently analyzed?

3. How reliable is the resulting algorithm?

The answers are entangled – e.g., the choice of experiments is influenced significantly by the
requirement that the resulting data be easily and reliably analyzable. We experimented with
a wide variety of approaches, eventually developing the extended LGST (eLGST) approach
presented here. In the interest of clarity and brevity, we provide only a cursory overview of
the various things that didn’t work.

Our original approach was entirely unstructured. We chose a variety of random gate
sequences (much like those used in randomized benchmarking, but without any underlying
compiled-Cli↵ord-gate structure), and then analyzed the resulting data using MLE. The
GST likelihood function is very messy, but still easy to evaluate, and its derivative can be
computed analytically. We found two problems with this approach:

1. Random gate sequences did not appear to give as much precision in the result as
we hoped for. Accuracy increased with L (the length of the longest or typical se-
quence), but not proportional to L. Furthermore, with no underlying theory of how
this “MLEGST” should perform, we could not determine how close it came to opti-
mality.

2. The lack of structure in the likelihood function made MLE very di�cult. Local gradient
optimization worked only unreliably, and was highly dependent on starting location.
We achieved reasonable success by beginning with LGST (which is closed-form and
totally reliable, but not very accurate), and then refining this estimate by adding
successively longer circuits to the likelihood function. However, when we applied this
technique in experiments (where the data are less clean, and the underlying model less
reliable), we found it to be still unreliable – basically, as we ran the optimizer longer,
and incorporated more global-optimizing techniques, it continued to find higher local
maxima of the likelihood, rather than converging to a global maximum.

We concluded that (a) as with LGST, we needed to choose our gate sequences carefully to
make the analysis easier, and (b) brute-force MLE was not an appealing solution.

4.1 Extended LGST

We have settled on a protocol that reliably, consistently provides both extremely high accu-
racy and reliable analysis. We call it extended LGST (eLGST), and it is based around three
critical modifications to the original “unstructured MLE” approach.

First, instead of implementing random sequences of gates, we choose a relatively small
set of base sequences, denoted {Sl : l = 1 . . . n}. A base sequence S represents a sequence of
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gates from the gate set, as S = [s1, s2, . . . sL], where L is the length of S. Applying the base
sequence implements an operation given by the gate sequence product �(S):

�(S) = Gs
L

Gs
L�1 . . . Gs2Gs1 . (4.1)

For each base sequence Sl, we perform LGST on its gate sequence product, by performing
the n2 experiments

hhFi| �(Sl) |Fjii. (4.2)

(That is, we prepare ⇢, then apply the short fiducial sequence Fj, then all the gates in Sl,
then Fi, and then measure.) Given these data, we can use basic LGST methods to directly
estimate �(Sl), up to a gauge that is the same for all base sequences.

Second, the base sequences themselves are chosen carefully, not randomly. We discuss this
in detail below, but each base sequence consists of a short “germ” sequence (e.g., GxGyGy)
repeated several (perhaps many) times in a row. This structure ensures that small deviations
from ideal behavior in each gate are amplified, and thus have an e↵ect proportional to L
in the observed probabilities. This allows eLGST to achieve consistent, reliable, predictable
accuracy that scales as 1/L.

Third, we do not use MLE directly. Instead, we use least-squares methods. As noted
in the introductory material, least-squares optimization is a good proxy for MLE when
the number of samples (N) is large. It is generally a bit suboptimal for small N , but is
both much faster and more amenable to analytic understanding (although in general it still
requires numerical implementation). eLGST relies partly on direct LGST (which is itself a
least-squares method, albeit one implemented analytically using only linear algebra), and
partly on numerical least-squares to collate the results of LGST on di↵erent base sequences.

4.1.1 Computing the eLGST estimate

Let us postpone the discussion of exactly how the base sequences are chosen. Suppose, for
now, that we simply perform direct LGST on base sequences of the form GL

k – that is, L
repetitions of each individual gate in the gateset. Let us also assume that we repeat each
experiment N times, and the result of the LGST analysis is that we obtain a reasonably
accurate estimate of the gate sequence product (�) for each base sequence. We denote this

estimate by cGL
k , and assume that

cGL
k = GL

k ± O(1)p
N

.

Now, if each Gk were a real scalar, then getting a high-precision estimate would be very

simple. We would take a low-precision estimate cGL
k for some very large L and compute its

Lth root,

cGk =
⇣
cGL
k

⌘1/L

= Gk ± O(1)

L
p
N
.
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This is the scaling we do eventually achieve, but it’s not that easy, because the Gk are
matrices.

The first problem is demonstrated even by the simple case where Gk is a complex scalar,

Gk = ei✓.

Now GL
k = ei(L✓ mod2⇡), and so the Lth root is multivalued (i.e., ✓ ! ✓ + n2⇡

L
leaves all

observable probabilities invariant). We have to choose the right branch. This is impossible
without further information.

We solve this problem by bootstrapping up from L = 1 to L = Lmax, choosing base
sequences for L = 1, 2, 4, 8, 16 . . . , Lmax. The additional cost is only logarithmic in Lmax,
and as long as N is large enough, it completely solves the problem of choosing which branch.
We begin by using the L = 1 data to get a decent estimate of Gk ±O(1)/

p
N . Then, we use

the L = 2 data to deduce that

Gk ⇡ ±
q

cG2
k,

and use the L = 1 estimate to identify unambiguously which of the two branches indicated
by the ± symbol is correct. We repeat this process recursively for each successively larger
L.

The second problem is peculiar to matrices. The procedure given above works very well
for scalar Gk = ei✓, but not for matrix-valued Gk. To see this, consider the example of

Gk = �Z .

Clearly, G2
k = 1l. If we perform LGST on G2

k, we will generally obtain cG2
k = 1l± O(1)/

p
N ,

where the error term is a small, random matrix. Suppose (without loss of generality) that

we get cG2
k = 1l+ ✏�x. There are multiple square roots of cG2

k, but this isn’t the main problem;
the main problem is that none of them are even close to the true value of Gk = �z! Instead,
every square root of 1l + ✏�x is diagonal in the �x basis.

The root of the problem is that the matrix square-root function is highly non-smooth,
and can rip apart the topology of matrices. To fix it, we observe that we should be looking

for a cGk such that cGk

2 ⇡ cG2
k – not such that cGk ⇡

q
cG2

k. These two equations are not even
remotely equivalent (thanks to the topological violence that can be hiding in the matrix
root).

We implement these tricks using the following iterative algorithm:

1. Use LGST on base sequences of the form GL
k for L = 1, 2, 4, 8, 16 . . . Lmax to obtain

approximate estimates cGL
k .

2. For each Gk, set the initial cGk equal to cG1
k.
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3. Use least-squares optimization to vary cGk so as to minimize

�2 = |cGk � cG1
k|22 + |cGk

2 � cG2
k|22. (4.3)

4. Repeat Step 3 with a new cost function �4 = �2 + |cGk

4 � cG4
k|22.

5. Continue repeating Step 3 with cost functions �8, �16, . . . �L
max

until all data has been
incorporated.

This algorithm is easy to implement, fast (in many cases it runs in O(1) second), reliable,
and accurate. Its accuracy can be improved (see below) by being more statistically careful
and using weighted least squares, but this generally provides at most a factor of 2. This is
utterly dwarfed by the hyperaccuracy that stems from the 1/L factor.

However, one significant problem remains. It stems not from the analysis algorithm, but
from the base sequences we have (naively, so far) chosen to perform LGST on.

4.2 Base sequences and germ powers

The reason for long-circuit GST (and hence the eLGST protocol) is to achieve very high
accuracy, by amplifying the gate parameters so that they can be measured very accurately
using relatively imprecise estimates of probabilities. Intuitively, we want to take each pa-
rameter ✓ in the gateset and map it to a probability that depends on it as p ⇡ L✓. The
protocol outlined above does this – but only for some parameters of the gateset.

To see this, consider the simple (but realistic) example of a gateset containing just one
gate that implements an x-rotation by angle ✓, G[⇢] = U⇢U † where U = ei(✓/2)�x . Repeated
L times, this gate performs a rotation by L✓, and so indeed we can estimate the rotation
angle ✓ to great precision (1/L). But what if the axis of the rotation changes? Suppose, for
example, that ✓ = ⇡, so that two rotations equate to the identity operation. Suppose that
we perturb U by changing the axis around which it rotates:

U ! U 0 = ei(✓/2)~�·~n,

where ~n = cos ✏�x + sin ✏�z. This is an O(✏) change, so we expect that it will become
significant for L ⇡ 1/✏. But it does nothing of the sort, because U 0 is also a ⇡ rotation
(around a di↵erent axis) and so (U 0)2 = 1l (up to an unobservable global phase). And
therefore (U 0)L = UL if L is even, or (U 0)L = U 0UL�1 if L is odd. In both cases, no matter
how large L is, the deviation is never amplified at all – it is always of order ✏, with no
L-dependence at all.

The problem here is that the dominant X rotation is actually echoing away the ✏Z per-
turbation on it. The circuit GL amplifies X errors (which commute with G), but performs
dynamical decoupling on Z errors (which anticommute with G). In fact, it is relatively
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straightforward to show that for nearly-unitary gates, the only deviations that can be am-
plified by repeating G many times are those that commute with G itself. Since G is a d2⇥d2

matrix, it has d4 parameters that could vary, but only d2 of them (in general) can commute
with G and therefore be amplified by GL.

As a result, we find that when we use only base sequences of the form GL
k , we obtain ex-

tremely precise information about the eigenvalues of each Gk, but no advantage proportional
to L at all for the eigenvectors or o↵-diagonal elements of Gk.

In order to achieve hyperaccuracy for all parameters, we add additional base sequences.
They consist of short sequences called germs, repeated many times. Each germ, when re-
peated, amplifies a particular linear combination of the parameters in the gateset (not typi-
cally parameters of any single gate, since multiple gates appear in most germs). We denote
the set of germs by {gm}, and for each germ g we define base sequences of [approximate]
length L = 1, 2, 4, 8, . . . Lmax as

Sg,L = gbL/l(g)c, (4.4)

where l(g) is the length of germ g. Here is a specific real-world example. The most common
gateset we encounter includes three gates, denoted {Gx, Gy, Gi} which are intended to be
⇡/2 rotations around the X and Y axes and an idle/identity gate (respectively). A good set
of germs for this gateset (see next section) is

g1 = Gx (4.5)

g2 = Gy

g3 = Gi

g4 = GxGy

g5 = GxGyGi

g6 = GxGiGy

g7 = GxGiGi

g8 = GyGiGi

g9 = GxGxGiGy

g10 = GxGyGyGi

g11 = GxGxGyGxGyGy.

The germ-powers for L = 1 are

S1,1 = Gx

S2,1 = Gy

S3,1 = Gi.
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For L = 16, they are

S1,16 = (Gx)
16

S2,16 = (Gy)
16

S3,16 = (Gi)
16

S4,16 = (GxGy)
8

S5,16 = (GxGyGi)
8

S6,16 = (GxGiGy)
5

S7,16 = (GxGiGi)
5

S8,16 = (GyGiGi)
5

S9,16 = (GxGxGiGy)
4

S10,16 = (GxGyGyGi)
4

S11,16 = (GxGxGyGxGyGy))
2.

This more elaborate set of base sequences requires a slightly more sophisticated eLGST
algorithm. We maintain the iterative structure of the algorithm, but in the nth step, we
include all sequences of length L  2n. The objective function at the nth step is

�n =
X

all S
m,L

of length 2n

�({cGk}, dSm,L), (4.6)

where dSm,L is a direct LGST estimate of the gate sequence product for the base sequence
Sm,L, and �() is the squared 2-norm distance between the gate sequence product predicted

by the estimate {cGk} and the one directly estimated by LGST.

4.2.1 Choosing germs

The point of doing experiments that correspond to germ-power sequences is to ensure that
every parameter of the gateset is amplified. We choose germs with this in mind. As of this
writing, we do not know of a purely theoretical way to choose germs. In principle, we could
simply simulate GST using various sets of germs, and see which ones work well. Fortunately,
this isn’t necessary; we can use theory to simplify the task a great deal (although ultimately
some numerics are required). We simplify the problem by considering two idealizations:

1. We assume that the gates are nearly unitary,

2. We focus on the e↵ect of very long (L � 1) germ powers.

For each germ g, let us define the gate sequence product �(g). The gate sequence product
for germ powers of g with L � 1 will then be simply �(g)l for some (relatively large) l. These
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matrices, �(g)l, are the ones on which we do LGST, and for which we get low-precision

estimates [�(g)l.

Each such estimate will constrain certain parameters of the gateset. To determine which
parameters – and how precisely it constrains them – we ask how �(g)l changes if the gateset
is varied just slightly. Let G be a vector representing the entire gateset (⇢ and E are not
relevant for this calculation, so G = {Gk}), with all Kd4 matrix elements of the {Gk}
arranged in a column. The sensitivity of the [directly observable] �(g)l to G is simply the
Kd4 ⇥ d4 matrix Jacobian

Jg =
@�(g)l

@G . (4.7)

We could compute this Jacobian numerically for each g and L, but it is simpler to observe
that

@�(g)l

@G = l�(g)l�1T�(g)[
@�(g)

@G ], (4.8)

where, for l � 1, T�(g) is the superoperator corresponding to twirling by �(g). (This expres-

sion is somewhat nontrivial to derive, but only because �(g) and @�(g)
@G do not commute –

which is critical to deriving the twirling portion). The e↵ect of the twirling is to annihilate
all elements of @�(g)

@G that do not commute with �(g), or (equivalently) to project it onto the
commutant of �(g).

So for each germ, we can compute a Jacobian which identifies exactly what parameters of
the gateset G will influence �(g)l. In the limit of large l, every parameter is either amplified
proportional to l or echoed away. Given two or more germs, their joint sensitivity is described
by simply stacking the corresponding Jacobians next to each other:

Jg1,g2... = (Jg1 Jg2 · · · ) . (4.9)

And a set of germs is complete – i.e., amplifies every observable parameter of G – if and
only if the rank of its Jacobian (which can be obtained by SVD) is equal to the number of
observable parameters in G. There is actually a hidden caveat here; some of the parameters
of G are gauge parameters, so the number of observable parameters is actually less than
Kd4, and generally equals (K�1)d4+1 (because there are usually d4�1 gauge parameters).
So, we can simply add germs until the Jacobian’s numerically-computed rank reaches this
threshold.

In practice, we want the germs to be not just complete but uniformly complete – i.e.,
they should amplify each parameter as much as possible. Amplification is proportional to
the singular values of the Jacobian, so we want to ensure that all (K � 1)d4 + 1 singular
values of the Jacobian are not just nonzero, but as large as possible. Although we have
no closed-form algorithm for achieving this, we can do so rather e↵ectively by adding and
removing germs from the set until the spectrum of the resulting Jacobian stabilizes. It is
this heuristic algorithm that produced the germ set given above in Eqs. 4.5.
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Chapter 5

Adaptive tomography improves
accuracy quadratically
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Quantum information processing requires reliable, repeatable preparation and transfor-
mation of quantum states. Quantum state tomography is used to identify the density matrix
⇢ that was prepared by such a process. No finite ensemble of N samples is su�cient to
uniquely identify ⇢, so we estimate it, reporting either a single state b⇢ that is “close” to ⇢
with high probability [8, 9, 3, 10, 11], or a confidence region of nonzero radius that contains
⇢ with high probability [12, 4]. Both approaches must accept some inaccuracy (the discrep-
ancy between b⇢ and ⇢) or imprecision (the diameter of the confidence region). The universal
goal of state tomography is to minimize this discrepancy, which has been quantified with
various metrics (e.g., trace norm, fidelity, relative entropy, etc.). In this analysis, we focus
on the particularly well-motivated quantum infidelity,

1� F (b⇢, ⇢) = 1� Tr

✓qp
⇢b⇢p⇢

◆2

, (5.1)

and show that as N ! 1, adaptive tomography reduces expected infidelity from O(1/
p
N)

to O(1/N).

Unlike alternative metrics, 1�F (b⇢, ⇢) quantifies an important operational quantity: how
many copies are required to reliably distinguish b⇢ from ⇢?. Without doing justice to the rich
body of research behind this simple statement (e.g., [13, 14, 15, 16, 17, 18]. . . ), we summarize
as follows. The discrepancy between b⇢ and ⇢ given a single sample is well described by the
trace distance, |b⇢� ⇢|1. But tomography (i) requires N � 1 samples; (ii) is used to predict
experiments onN � 1 samples; and (iii) yields errors that cannot be detected withoutN � 1
samples. So the operationally relevant quantity is

��b⇢⌦N � ⇢⌦N
��
1
, which for N � 1 behaves

as 1� e�D(b⇢,⇢)N . The exponent D is the quantum Cherno↵ bound [18], and N ⇡ D log(1/✏)
samples are necessary and su�cient to distinguish ⇢ from b⇢ with confidence 1 � ✏. D is
tightly bounded by the logarithm of the fidelity (see [17], Eq. 28); when 1 � F (b⇢, ⇢) ⌧ 1
(which should always be true in tomography!), � log(F ) ⇡ 1� F and

1� F

2
 D  1� F. (5.2)

Thus, 1 � F really does (almost uniquely) quantify tomographic inaccuracy; N ⇡ [1 �
F (b⇢, ⇢)]�1 samples are (up to a factor of 2) necessary and su�cient 1 to falsify b⇢. In con-
trast, Hilbert-Schmidt- and trace-distance have no such N -sample meaning, and give wildly
misleading metrics of tomographic error.

We show that standard tomography with static measurements can’t beat 1 � F =
O(1/

p
N) as N ! 1 for a large and important class of states, then introduce and ex-

plain a simple adaptive protocol that achieves 1� F = O(1/N) for every state. Finally, we
demonstrate this e↵ect in a linear optical experiment, achieving a 10-fold improvement in
infidelity (from 0.1% to 0.01% with N = 3⇥ 104 measurements) over standard tomography.
We believe this protocol will have wide application, particularly in situations where the rate

1Remarkably, for large N , local measurements can discriminate almost as well as joint measurements on
all N samples. IfDQ andDC are the optimal error exponents for joint and local measurements (respectively),
then (1� F )/2  DC  DQ  1� F [17].
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of data collection is small, such as post-selected optical systems (e.g. [19], where data were
collected at approximately 9 measurements per hour).

Adaptivity has been proposed in various contexts. Single-step adaptive tomography was
first analyzed by [20], then refined in [21, 1, 22]. A scheme similar to ours (and its e�cacy for
pure states) was analyzed in [23]. Ref. [24] recently treated state estimation as parameter
estimation, obtaining results complementary, but largely orthogonal, to those reported here.
Here, we present both an experimental demonstration and simple, self-contained derivation
of: (1) why quantum fidelity is significant; (2) why adaptive tomography achieves far better
infidelity; and (3) how the adaptation should be done. We optimize worst-case infidelity
over all states, not just pure states [23] or specific ensembles of mixed states (e.g. Ref. [1]
achieved high average fidelity, but low fidelity on nearly-pure states).

5.1 Adaptive tomography

Static tomography uses data from a fixed set of measurements. Di↵erent measurements yield
subtly di↵erent tomographic accuracy [25], but to leading order, “good” protocols for single-
qubit tomography provide equal information [26] about every component of the unknown
density matrix ⇢,

⇢ =
1

2
(1l + h�xi �x + h�yi �y + h�zi �z) . (5.3)

The canonical example involves measuring the three Pauli operators (�x, �y, �z). This
minimizes the variance of the estimator b⇢ – but not the expected infidelity, for two reasons.

First, the variance of the estimate b⇢ depends also on ⇢ itself. Consider the linear inversion
estimator b⇢lin, defined by estimating h�zi = n"�n#

n"+n#
(and similarly for h�xi and h�yi), and

substituting into Eq. 5.3. Each measurement behaves like N/3 flips of a coin with bias
pk =

1
2
(1 + h�ki), and yields

p̂k = pk ±
r

3

N

p
pk(1� pk) (5.4)

) h�kiestimated = h�kitrue ±
r

3

2N

q
1� h�ki2. (5.5)

When h�ki ⇡ 0, its estimate has a large variance – but when h�ki ⇡ ±1, the variance is very
small. As a result, the variance of b⇢ around ⇢ is anisotropic and ⇢-dependent (see Fig. 5.1a).

Second, the dependence of infidelity on the error, � = b⇢�⇢, also varies with ⇢. Infidelity
is hypersensitive to misestimation of small eigenvalues. A Taylor expansion of 1 � F (b⇢, ⇢)
yields (in terms of ⇢’s eigenbasis {|ii}),

1� F (⇢, ⇢+ ✏�) =
1

4

X

i,j

hi|� |ji2
hi| ⇢ |ii+ hj| ⇢ |ji +O(�3). (5.6)
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Infidelity is quadratic in � – except that as an eigenvalue hi| ⇢ |ii approaches 0, its sensitivity
to hi|� |ii diverges; 1� F becomes linear 2 in �:

1� F (⇢, ⇢+ ✏�) = ✏
X

i: hi|⇢|ii=0

hi|� |ii+O(�2). (5.7)

To minimize infidelity, we must accurately estimate the small eigenvalues of ⇢, particularly
those that are (or appear to be) zero. For states deep within the Bloch sphere, static
tomography achieves infidelity of O(1/N) [20, 27]. Typical errors scale as |�| = O(1/

p
N)

(Eq. 5.5), and infidelity scales as 1 � F = O(|�|2). But for states with eigenvalues less
than O(1/

p
N), infidelity scales as O(1/

p
N). Quantum information processing relies on

nearly-pure states, so this poor scaling is significant.

To achieve better performance, we observe that if ⇢ is diagonal in one of the measured
bases (e.g., �z), then infidelity always scales as O(1/N). The increased sensitivity of 1 � F
to error in small eigenvalues (Eq. 5.6) is precisely canceled by the reduced inaccuracy that
accompanies a highly biased measurement-outcome distribution (Eq. 5.5). This suggests an
obvious (if näıve) solution: we should simply ensure that we measure the diagonal basis of
⇢!

This is unreasonable – knowing ⇢ would render tomography pointless. But we can perform
standard tomography on N0 < N samples, get a preliminary estimate b⇢0, and measure
the remaining N � N0 samples so that one basis diagonalizes b⇢0. This measurement will
not diagonalize ⇢ exactly, but if N0 � 1 it will be fairly close. The angle ✓ between the
eigenbases of ⇢ and b⇢0 is O(|�|) = O(1/

p
N0). This implies that if ⇢ has an eigenvector

| ki with eigenvalue �k = 0, then corresponding measurement outcome |�kih�k| will have
probability at most pk = sin2 ✓ ⇡ ✓2 = O(1/N0). Since we make this measurement on
O(N �N0) copies 3, the final error in the estimated p̂k (and therefore in the eigenvalue �k)
is O(1/

p
N0(N �N0)). So using a constant fraction N0 = ↵N of the available samples for

the preliminary estimation should yield O(1/N) infidelity for all states.

A similar protocol was suggested in Ref. [1], but that analysis concluded that N0 / Np

for p � 2
3
would be su�cient. This works for average infidelity over a particular ensemble,

but yields 1� F = O(N�5/6) for almost all nearly-pure states.

5.2 Simulation results

We performed numerical simulations of single-qubit tomography using four di↵erent proto-
cols: (1) standard fixed-measurement tomography; (2) adaptive tomography withN0 = N2/3,
as proposed in [1]; (3) adaptive tomography with N0 = ↵N (for a range of ↵); and (4) “known

2Because ⇢ lies on the state-set’s boundary, the gradient of F need not vanish in order for b⇢ = ⇢ to be a
local maximum.

3The “O” notation is necessary here because some of the remaining N �N0 copies may be measured in
other bases that make up a complete measurement frame.
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Figure 5.1. Two features of qubit tomography with Pauli
measurements (shown for an equatorial cross-section of the
Bloch sphere): (a) The distribution or “scatter” of any un-
biased estimator b⇢ (depicted by dull red ellipses) varies with
the true state ⇢ (black stars at the center of ellipses); (b) The
expected infidelity between b⇢ and ⇢ as a function of ⇢. Within
the Bloch sphere, the expected infidelity is O (1/N). But in

a thin shell of nearly-pure states (of thickness O
⇣
1/
p
N
⌘
),

it scales as O
⇣
1/
p
N
⌘

– except when ⇢ is aligned with a

measurement axis (Pauli X, Y , or Z).

basis” tomography, wherein we cheat by aligning our measurement frame with ⇢’s eigenbasis
(for all N samples). We simulated many true states ⇢, but present a representative case: a
pure state with (h�xi, h�yi, h�zi) = (0.5, 1/

p
2, 0.5)

|%i = 1

2

✓ p
3

1p
3
� 2ip

6

◆
(5.8)

Our results are not particularly sensitive to the exact estimator used; we used maximum-
likelihood estimation (MLE) with a quadratic approximation to the negative loglikelihood
function:

l(⇢) = � logL(⇢) ⇡
3X

k=1

Nk(Tr[⇢Ek]� fk)2

fk(1� fk)
, (5.9)
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where fk = nk/Nk are the observed frequencies of the +1 eigenvectors of the three Pauli
operators �k, Ek is the corresponding projector, and Nk is the number of samples on which
�k was measured. Convex optimization (in MATLAB [28]) was used to find b⇢MLE. Results
were averaged over many (typically 150) randomly generated measurement records.

Figure 5.2 shows average infidelity versus N . We fit these simulated data to power laws
of the form 1 � F = �Np, and found p = �0.513 ± 0.006 (for static tomography), p =
�0.868±0.008 (for adaptive tomography with N0 = N2/3), p = �0.980±0.006 (for adaptive
tomography with N0 = 0.5N), and p = �0.993± 0.09 (for known-basis tomography). These
results are not significantly di↵erent 4 from predictions of the simple theory (p = �1

2
,�5

6
, 1,

and 1, respectively). The borderline-significant discrepancy is, we believe, due to boundary
e↵ects (b⇢MLE is constrained to be positive). We also varied ↵ = N0/N (Fig. 5.2, inset) and
found that ↵ = 1

2
optimizes the prefactor (�).

5.3 Experimental results

We implemented our protocol experimentally in linear optics (Fig. 5.3). Using type-1 spon-
taneous parametric down conversion in a nonlinear crystal, photon pairs were created. One
of these photons was sent immediately to a single photon counting module (SPCM) to act
as a trigger. The second photon was sent through a Glan-Thomson polarizer to prepare it
in a state of very pure linear polarization. Computer-controlled waveplates were first used
to prepare the polarization state of the photon, and subsequently used in tandem with a
polarization beamsplitter to project onto any state on the Bloch sphere.

We compared static and adaptive tomography protocols on a measured state given (in
the H/V basis) by

⇢ =

✓
0.7711 0.2010 + 0.3624i

0.2010� 0.3624i 0.2289

◆
, (5.10)

which has purity Tr(⇢2) = 0.991 and fidelity F = 0.992 with |%i (see Eq. 5.8). We identified

⇢ to within an uncertainty which is at most O(1/
p

Ñ) using one very long (Ñ = 107) static
tomography experiment, whose overwhelming size ensures accuracy su�cient to calibrate
the other experiments, all of which involve N  3⇥ 104 photons.

Our “standard” (static) protocol involved repeatedly preparing our target state, collecting
N/3 photons at each of the three measurement settings corresponding to �x, �y, and �z, and
computing b⇢MLE as outlined in [29]. Each data point in figure 5.4a represents an average
over many (⇠150) repetitions.

4All quoted uncertainties herein are 1�, or 68% confidence intervals. Therefore, we don’t expect the the
“true” value to lie within the error bars more than 68% of the time. Most of the results given here agree with
theoretical predictions to within 2� (95% confidence intervals), a common criterion for consistency between
data and theory.
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Figure 5.2. Average infidelity 1 � F (b⇢, ⇢) vs. sample size
N for Monte Carlo simulations of four di↵erent tomographic
procotocols: standard tomography (black), the procedure
proposed in [1] using N0 = N2/3 (red), our procedure using
N0 = N/2 (blue), and “known basis” tomography (green).
Both adaptive procedures clearly outperform static tomogra-
phy, but our procedure clearly outperforms the N0 = N2/3

approach, and matches the asymptotic scaling of known-basis
tomography. The inset shows the dependence of the prefactor
(�) on ↵ = N0/N .

To do adaptive tomography, we measured N0 = N/2 photons, used the data to generate
an ML estimate b⇢0, then rotated the measurement bases so that one diagonalized b⇢0. So, if
the preliminary estimate is

b⇢0 = �1 | 1ih 1|+ �2 | 2ih 2| ,
we define | 3/4i = (1/2)(| 1i± | 2i) and | 5/6i = (1/2)(| 1i± i| 2i), and then measure the
bases {{| 1i, | 2i}, {| 3i, | 4i}, {| 5i, | 6i}}. We measured the remaining N � N0 photons
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Figure 5.3. Spontaneous parametric downconversion is
performed by pumping a nonlinear BBO crystal with linearly
polarized light. One photon is sent directly to a detector as
a trigger. A rotation using a quarter-half waveplate combi-
nation prepares the other photon in any desired polarization
state. Finally, a projective measurement onto any axis of
the Bloch sphere is performed by a quarter-half waveplate
combination followed by a polarizing beamsplitter. The mea-
surement waveplates are connected to a computer to enable
adaptation.

in these new bases and constructed a final ML estimate using the data from both phases.

We fit a power law (1� F = �Np) to the average infidelity of each protocol (Fig. 5.4a),
and found p = �0.51± 0.02 for standard tomography, p = �0.71± 0.04 for the procedure of
Ref. [1], and p = �0.90± 0.04 for our adaptive procedure.

Our data generally match the theory; adaptive tomography outperforms standard tomog-
raphy by an order of magnitude even for modest (⇠ 104) N . Experiments that achieve very
low infidelities (⇠ 10�4) show small but statistically significant deviations from theory, which
we believe can be explained by waveplate misalignment – fluctuations on the order of 10�3

radians are su�cient to reproduce the observed deviations in simulations. For a detailed
discussion of systematic error and how it a↵ects our results please see the supplementary
material.

There is an even simpler adaptive procedure. After obtaining a preliminary estimate b⇢0,
we measured all of the remaining N/2 samples in the diagonal basis of b⇢0, neglecting the
second and third bases presented in the previous section’s protocol. This reduced adaptive
tomography procedure requires just one extra measurement setting (full adaptive tomography
requires three), but achieves the same O( 1

N
) infidelity (Fig. 5.4b). The best fits to the

exponent p in 1 � F = �Np are p = �0.51 ± 0.02 for standard tomography and p =
�0.88 ± 0.05 for reduced adaptive tomography (not significantly di↵erent from the results
shown in Fig. 5.4a). In higher dimensional systems, reduced adaptive tomography should
provide even greater e�ciency advantages.
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Figure 5.4. Experimental data: a) The average infidelity
1 � F (b⇢, ⇢) for the three tomographic protocols shown in
Fig. 5.2 vs. the number of samples N . Each average is
over 150 di↵erent realizations of the experiment. b) Average
infidelity 1�F (b⇢, ⇢) for standard tomography (black) and re-

duced adaptive tomography (blue) is plotted versus N . Each
average is over 200 di↵erent realizations of the experiment;
error bars are standard deviation of the mean of these sam-
ples. Error bars are standard deviation of the mean of these
samples.

5.4 Discussion

We demonstrated two easily implemented adaptive tomography procedures that achieve
1�F (b⇢, ⇢) = O(1/N) for every qubit state. In contrast, any static tomography protocol will
yield infidelity O(1/

p
N) for most nearly-pure states. Our simplest procedure requires only

one additional measurement setting than standard tomography. We see almost no reason
not to use reduced adaptive tomography in future experiments.

Previous work [1] optimized average fidelity over Bures measure, a very respectable choice
[30, 31, 32]. Unfortunately, the “hard-to-estimate” states lie in a thin shell at the surface
of the Bloch sphere, whose Bures measure vanishes as N ! 1. So although the scheme
with N0 / N2/3 proposed in [1] achieves Bures-average infidelity O(1/N), it achieves only

59



O(1/N5/6) infidelity for nearly all of the (important) nearly-pure states 5

The O(1/N) infidelity scaling achieved by our scheme is optimal, but the constant can
surely be improved – i.e., if our scheme has asymptotic error ↵/N , a more sophisticated
scheme can achieve ↵0/N with ↵0 < ↵. The absolutely optimal protocol requires joint
measurements on all N samples [33], and will outperform any local measurement. There is
undoubtedly some marginal benefit to adapting more than once, but we have shown that a
single adaptation is su�cient to achieve O(1/N) scaling.

We conclude with an observation that may surprise: adaptivity provides no advantage
at all if inaccuracy is measured by trace-norm or 2-norm, which aren’t hypersensitive to
small variations in small eigenvalues. This does not undermine our result – it has a simple
explanation. Trace-norm (|b⇢ � ⇢|1) quantifies single-shot distinguishability. When N � 1
samples are available, it becomes irrelevant. The relevant quantity is |b⇢⌦N � ⇢⌦N |1, whose
behavior is defined by the Cherno↵ bound [18], which in turn is well approximated by
infidelity. So infidelity is a measure of many-copy distinguishability. Since tomography is
necessarily concerned with N � 1 copies, the advantages of adaptivity are real, and hold
for all many-copy metrics (e.g., relative entropy, Cherno↵ bound, etc.)

5.5 Sources of systematic error

Above, we attributed certain properties of our experimental data to “systematic errors”.
Here, provide more detail on the role that systematic errors play in our experimental results,
and their interplay with static and adaptive tomography. “Systematic errors” is a broad
term, incorporating almost everything that can go wrong with an experiment, so we consider
several forms of it. We begin by briefly discussing frame misalignment, where adaptive
tomography yields no advantage, but almost nothing else can either. We then consider some
systematic errors in measurement that can be detected and mitigated, and demonstrate
through simulations that they a↵ect static tomography and adaptive tomography di↵erently.
Using a one-parameter fit and a model of our experiment, we show that waveplate-alignment
errors of around 1.5⇥ 10�3 radians reproduce our experimental results remarkably well. To
wrap up, we examine the asymptotic scaling of tomographic infidelity for three di↵erent
models of systematic error, and conclude that adaptive tomography mitigates these forms
of systematic error much better than static tomography can.

Frame Misalignment: The most systematic of errors is a fixed misalignment of ref-
erence frames. In our linear optics experiment, where a set of waveplates and a polarizing
beamsplitter are used to measure the polarization state of light, this means that all the
optical elements are misaligned by the same amount. Varying tomographic strategies can
have no e↵ect on this sort of error. In fact, this kind of frame misalignment cannot be de-

5Ironically, restricting the problem to pure states falsely trivializes it – the average and worst-case infidelity
is O(1/N) even for static tomography! The di�culty is not in estimating which pure state we have, but in
distinguishing between small eigenvalues (� = 0 vs � = 1/

p
N).
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tected at all within the experiment. It is equivalent to a change of gauge, has no operational
consequences in this context, and is not interesting.

Instead, let us consider some errors that, while less “systematic” than frame misalign-
ment, are also more detectable – and therefore potentially sensitive to di↵erent tomographic
strategies.

Figure 5.5. Average infidelity vs. sample size (N) for sim-
ulations with systematic errors (of Model 1 type; see text) on
the order of E = 10�2. The infidelity decreases with increas-
ing N up to a point, after which it flattens out after hitting
a ’noise floor’. The noise floor occurs at a lower average in-
fidelity for adaptive tomography than for static tomography.

Waveplate Misalignment: A very important source of errors for our experiment is the
alignment angle of the waveplates that measure photon polarization states. Our experiment’s

61



reference frame is defined by the polarizing beam-splitter used to make the final projective
measurement. To change the basis of the measurement, waveplates are mechanically rotated
by a motor with good but finite accuracy. Every time we change the measurement basis,
the motor’s finite accuracy causes a slight misalignment of the waveplates – and the ensuing
photodetections correspond to a measurement of a basis slightly di↵erent from the one we
intended to measure.

Our terminology for discussing these errors is as follows. We performed (and, in this Sup-
plement, we simulate) a large number of experiments. A single experiment (or experimental
run) comprises the production of N identically prepared photons. Within an experiment,
we implement several (3 to 6) measurement settings. Each measurement setting corresponds
to (i) adjusting the waveplate, then (ii) measuring a large number of photons without any
adjustments. In static tomography a single experiment includes three measurement settings
(projections onto X,Y, and Z axes of the Bloch sphere), in each of which N/3 samples are
measured. In adaptive tomography, a single experiment includes six measurement settings
(the same initial set of three, and then three more in a rotated frame), each applied to N/6
states.

We consider three di↵erent models of systematic error in waveplate alignment.

1. Model 1. Each time a waveplate (whose purpose is to make a measurement) is moved
to a new angle ✓, it ends up instead aligned at angle ✓ + �✓, where �✓ is a Gaussian
random variable with zero mean and standard deviation E. Thus, in each experimental
run, each measurement setting is misaligned by an independent random angle. This
angle persists over many samples in the same experimental run, but not across multiple
experimental runs.

2. Model 2. Each time a waveplate is moved, it misses its target ✓ by a random angle
�✓ that is fixed for each experiment, rather than for each measurement setting within
the experiment. This model is mathematically equivalent to (and can be taken to
represent) a small misalignment of the polarizing beam splitter. We take �✓, which is
fixed for each individual experiment, to be a Gaussian random variable with zero mean
and standard deviation E.

3. Model 3. The waveplates are misaligned by an angle �✓ that is fixed for each exper-
iment (as in Model 2), but each experiment has the same fixed misalignment. In this
model, �✓ = E is not a random variable.

We believe that Model 1 best represents our experiment. The waveplate motors used in
our experiment have an finite precision, and every time we change their angle, they return
to a factory-set “home” position before realigning (which eliminates or at least minimizes
correlation between successive alignment errors). Thus, the waveplate angle picks up a
di↵erent random error each time it is moved to a new measurement setting.

We simulated the e↵ect of Models 1-3 on adaptive and static tomography. In each
simulation, 200 independent experimental runs were generated (each involving at least 3
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measurement settings, with many identically prepared photons measured at each setting).
We averaged the tomographic infidelity of these 200 runs to characterize the e↵ect of random
waveplate errors in each model.

Figure 5.6. Average infidelity vs. sample size (N) for
simulations of adaptive tomography with systematic errors
(of Model 1 type; see text) on the order of E = 10�3. Also
plotted is the region over which experimental data was taken
(see main body of text) and a line of best fit for this region.

Results: Figure 5.5 shows error (average infidelity) versus sample size (N) for Model
1 with E = 0.5 degrees (⇠ 10�2 radians). As the sample size increases, statistical errors
decrease, and so average infidelity decreases. However, the error reaches a clear noise floor
as systematic errors begin to dominate. It is higher for standard tomography than for
adaptive tomography. We conclude that adaptive tomography is less sensitive than standard
tomography to systematic errors.

Since the alignment errors vary randomly from experiment to experiment, an astute
experimentalist might achieve higher accuracy by repeating each measurement setting many
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(M) times, resetting the waveplate each time. This would work, reducing the infidelity by a
factor of 1/

p
M , but it adds significantly to the experimental di�culty and complexity. For

example, if the waveplates have a precision of ⇠ 0.5 degrees, then when these systematic
errors dominate over statistical errors (see Figure 5.5), the infidelity of static tomography
saturates at 10�2, while for adaptive tomography it saturates at 10�3. Achieving the same
10�3 accuracy with static tomography would require repeating each measurement M = 100
times. Or, the experimentalist could just use adaptive tomography, and achieve it with only
a single extra waveplate setting.

Figure 5.7. Location of the noise floor (1 � F ) for

Models 1,2,3 (from top to bottom). For each of the three
Models, we plot the average infidelity as N ! 1 (to ensure
that systematic errors dominate) vs. E (the magnitude of
systematic error). Data points are results of simulation, and
lines are lines of best fit.

We then performed several simulations of Model 1, in which we varied E (the magnitude
of systematic error). For each value of E, we fit a line to the 1�F vs. N curve over the same
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range of N that we observed in our experiment. This is shown in Figure 5.2. A simulation
with E = 0.15 degrees yielded results almost indistinguishable from our experimental data.
In the experimentally observed region, the line of best fit has a slope of �0.895± 0.023,

1� F / N�0.895±0.023,

which matches our experimental data very well.

Finally, we investigated the value of the noise floor for Models 1-3 (Figure 5.7). Each
plot in Figure 5.7 shows 1�F (average infidelity) vs. E (magnitude of systematic errors) on
a log-log plot, for both standard and adaptive tomography. We examined su�ciently high
N to guarantee that systematic errors dominate.

1. For Model 1, the line of best fit (on a log-log plot) for standard tomography has a slope
of 1.03±0.01 and the line of best fit for adaptive tomography has a slope of 2.00±0.01.

2. For Model 2, the slopes of the lines of best fit are 1.01± 0.02 and 1.91± 0.02.

3. For Model #3, the slopes of the lines of best fit are 1.18± 0.01 and 1.99± 0.01.

We conclude that in all three models of systematica error that we considered here, it’s fair to
say that average infidelity scales linearly with E for standard tomography, and quadratically
with E for adaptive tomography. Adaptive tomography is substantially more robust to
systematic errors than standard tomography – not just by a constant factor, but qualitatively
so.

Conclusion: We have shown that for three reasonable models of systematic errors,
the average infidelity of adaptive tomography scales with E2 and the average infidelity of
static tomography scales with E, where E is the magnitude of these errors. Infidelity is
very sensitive to spectral errors (i.e., changes in the eigenvalues of the estimated density
matrix), but not to unitary errors (changes in the eigenvectors). The primary result of
systematic errors in the measurement basis – i.e., measuring the wrong basis by an angle
E – is a unitary error in the estimate by O(E). As we have shown in the main text,
adaptive tomography measures the eigenvalues of the density matrix to much higher precision
than static tomography. Furthermore, adaptive tomography (because it specifically seeks to
measure the diagonal basis of ⇢) still obtains an accurate estimate for the eigenvalues even
in the presence of systematic error. Even if we get the basis wrong by an angle of O(E),
this only a↵ects the measurement probabilities (and therefore the estimated spectrum) by
O(E2).

65



66



Chapter 6

SU(2)-covariant probe states for
quantum process characterization
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The goal of quantum metrology is to measure or detect physical phenomena with sur-
prising precision by exploiting quantum resources. Often, this means using entangled states
to achieve greater resolution or sensitivity. For example, squeezed light[34] and N00N states
[35, 36, 37] have been used in interferometers to achieve higher precision in single parameter
estimation. N00N states are maximally sensitive to small U(1) phase shifts [38], but they
are fragile. Other parameters might be best detected or estimated by a di↵erent optimal
state [39, 40], and for estimating a even a simple three-parameter SU(2) process the optimal
state is unknown [41]. At the opposite extreme of metrology is quantum process tomography
(QPT) [42, 43]. Here, the goal is to learn every parameter of an unknown process. QPT
requires a diverse set of probe states, and the overall accuracy of estimation depends on
the properties of the entire set. For process tomography on a single quantum optical mode,
Lobino et al. [44] showed that it is su�cient to (1) prepare a single Glauber coherent state
and (2) displace it by a variety of phase space translations. This approach, in which a sin-
gle “fiducial” state is multiplied into a complete set of probe states by easily implemented
group transformations, has the great merit of experimental ease. But while su�ciently large
coherent-state ensembles are su�cient for process tomography, they are not e�cient. Co-
herent states are very “classical” [45], and provide exponentially little information about
parameters of some quantum processes, motivating a search for set of states for tomography
which provide equal information about all possible processes (see [46] for a precise statement
of this problem).

In this chapter, we examine a closely related question for 2-photon polarization (“bipho-
ton”) states. Like an optical mode, this system admits [spin]-coherent states (as well as
others). The corresponding symmetry group, SU(2), is transitive on the set of coherent
states, i.e. a spin-coherent state can be transformed into any other spin-coherent state by
applying a polarization (SU(2)) rotation. We prepare a wide range of probe states, and
quantify their performance at two opposite extremes of the metrology spectrum: (1) their
ability to detect random SU(2) phase shifts, and (2) their ability to characterize an unknown
process, when displaced by a variety of SU(2) rotations and used for QPT. Remarkably, the
most sensitive detector states (N00N states) are also among the least e↵ective for QPT! The
optimal SU(2)-covariant set (i.e. a set generated by applying SU(2) operations to a fiducial
state) for QPT is generated by a state that is neither spin-coherent nor N00N, but outper-
forms both of them. When displaced by uniformly random SU(2) operations, it generates a
2-design [47, 48], confirming the theoretical prediction that 2-designs should be optimal for
process tomography.

We focus on a particular, important family of processes that we call SU(2) jitter. In
SU(2) jitter, an N -photon state experiences a small random collective SU(2) rotation, whose
magnitude is Gaussian-distributed. Detecting and characterizing SU(2) jitter is important
because it is a common model for decoherence[49], the primary enemy of quantum informa-
tion and computation [50]. Noiseless subsystems [51, 52] were designed against this noise
model.
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Figure 6.1. Schematic diagram of the experimental
apparatus used to generate and measure di↵erent biphoton
states. a) State Preparation – We can prepare any bipho-
ton state in two steps. First, we prepare a state of the formp
x |2, 0iH,V +ei�

p
1� x |0, 2iH,V by using a polarizing beam

splitter (PBS) to combine a vertically polarized weak coher-
ent state with the output of horizontally polarized type-I
collinear down-conversion. The amplitude x is set by at-
tenuating the laser intensity relative to the down-converted
intensity. The angle � is set by the relative phase between
the two paths, which we control using a liquid-crystal wave
plate (LCWP). Then, we apply any desired polarization ro-
tation in SU(2), using quarter- and half-waveplates, to pro-
duce any desired biphoton state. b) Process – 3 LCWPs,
oriented as shown, are used to perform arbitrary polarization
rotations. To implement depolarization, the retardances of
the LCWPs are made to fluctuate during each measurement.
c) State Measurement – The biphoton states pass through
wave plates, are coupled into a polarization-maintaining fiber
and sent to a polarizing beam splitter. The output of each
port of the beam splitter is probabilistically split, using 50:50
fiber beam splitters, and sent to single-photon counting mod-
ules. d) Input States – A graphical representation of the
set of states used for process tomography. A fiducial state is
prepared and rotated to nine other states. These states (in-
cluding the unrotated fiducial state) make up the set of ten
input states used for process tomography. The fiducial state
is represented by the red line, and it is rotated to each of the
nine other points on the sphere. The rotations are chosen to
be (approximately) uniformly distributed on the surface of
the sphere.
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6.1 Experimental Methods and Preliminary Validations

A biphoton is a system of two photons in the same spatial and temporal modes[53, 54]. Basis
states can be described by specifying the number of photons polarized horizontally (H) and
vertically (V), e.g.

C0 |2, 0iH,V + C1 |1, 1iH,V + C2 |0, 2iH,V . (6.1)

A single-photon polarization state is a two-level system and it is isomorphic to a spin-1/2 par-
ticle. We can define a single horizontally-polarized photon to be a spin-up spin-1/2 particle
and a vertically-polarized photon to be a spin-down spin-1/2 particle. Similarly, the polar-
ization state of a biphoton is isomorphic to a spin-1 particle [55]. Hence we can write a general
biphoton state in the angular-momentum basis {|J = 1,m = +1i , |J = 1,m = 0i , |J = 1,m = �1i}
as

C0 |1,+1i+ C1 |1, 0i+ C2 |1,�1i , (6.2)

where the equivalence between the two biphoton bases can be seen by comparing equations
6.1 and 6.2. A collective polarization rotation corresponds to an SU(2) rotation of the
e↵ective spin-1 particle about some axis ~r by an angle ✓.

Two photons polarized in the same direction form a spin-coherent state, and these spin-
coherent states are analogous to the Glauber coherent states of an optical mode [56]. Just
as [44] used displaced Glauber coherent states as input states for QPT, a set of at least nine
distinct spin-coherent states can form a complete probe set for QPT, and can be generated by
applying various SU(2) rotations to a single fiducial spin-coherent state. Here, we generalize
this procedure in a simple way: we prepare a fiducial state that is not necessarily a spin-
coherent state, and generate candidate probe sets for QPT by applying 10 distinct SU(2)
rotations to it. (We prepare 10 fiducial states instead of 9 because it is experimentally
convenient, and provides a small amount of useful redundancy). Our fiducial states take the
form

| xi =
p
x |2, 0iH,V +

p
1� x |0, 2iH,V , (6.3)

and are prepared using the apparatus sketched in Fig. 6.1a and the methods described in
[57, 58, 59, 60, 61, 62].

In brief, we prepare our biphoton states by combining vertically-polarized laser light with
horizontally-polarized collinear down-converted light into the same spatial mode by overlap-
ping them at a polarizing beamplitter. We then post-select on two-photon events in this
mode. Since down conversion only produces photon in pairs we can only ever detect two
horizontally-polarized down-converted photons or two vertically-polarized laser photons. If
the photons from both sources are indistinguishable this process will result in the superpo-
sition state of Eq. 6.3. To set x we tune the amplitude of the laser light while keeping the
amplitude of the the down-converted light fixed. We actively stabilize the phase between
the laser light and the down-converted light, allowing for data runs lasting several hours
[62]. The class of biphoton states which we can prepare (Eq. 6.3) includes spin-coherent
states (x = 0, 1) and the two-photon N00N state (x = 1

2
). In fact, any biphoton state can

be prepared by choosing some value of x and then applying some SU(2) rotation using wave
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plates. (N -photon states have N � 1 parameters that are SU(2)-invariant; for the biphoton,
x is the only parameter.)

The horizontally- and vertically-polarized photons are not perfectly mode-matched when
generated. We remedy this by passing them through a 3nm filter and coupling them into a
single-mode fiber, which discards any photons not in the desired mode. This procedure re-
sults in near-perfect biphotons, as quantified by the [very small, < 2%] amount of population
in the anti-symmetric subspace. We characterize our state preparation by doing quantum
state tomography using the apparatus of Fig 6.1c as described in Ref. [54, 55]. To visualize
quantum polarization states on the Poincare sphere we must use a quasi-probability distri-
bution because arbitrary N-photon polarization states cannot be represented as a point on
the Poincare sphere (as can be done with classical light). We use Wigner distributions as
defined in Ref. [63]. Our resulting experimentally-measured biphoton states, after numeri-
cally filtering out the anti-symmetric subspace, are depicted in the first column of Fig. 6.2
as Wigner distributions plotted on the Poincare sphere [64]. As x is increased, the states
become more “nonclassical”, with the most nonclassical state being the N00N state with
x = 0.5 (See row (c), column 1 of Fig. 6.2). This procedure lets us prepare any desired state
with fidelity � 93%.

The process we study, depolarization due to fluctuating SU(2) rotations, manifests itself
in many experimental systems – e.g., a spin in a fluctuating magnetic field, or a polarization
state propagating through an optical fiber which thermally fluctuates with time. In both
cases, the state (the spin state or the polarization state) couples to an external system (a
time-varying field or a time-varying birefringence), causing depolarization. For example, a
spin is coupled to a magnetic field via the Hamiltonian Ĥ = �µ ~J · ~B, where ~B = Bo~r (the
direction of the magnetic field is ~r and the strength of the magnetic field is Bo). This has the
e↵ect of rotating the spin about an axis ~r by an angle ✓ = µBo, as described by the unitary

operator Û = e�i✓ ~r·~J
~ . If ~B changes with time, then the output state of this process can be

described by properly averaging over ~r and ✓ [65]. (Polarization states are similarly rotated
by a birefringent refractive index, where ✓ is related to the strength of the birefringence and
~r to the orientation of optical axis.) In SU(2) jitter we consider isotropic depolarization (by
which we mean that there is no preferred rotational axis) and we assume that ~r and ✓ are
uncorrelated. In this case, the quantum process is:

D�[| i h |] =
Z

d~r

Z
d✓P (✓)e�i✓ ~r·~J

~ | i h | e+i✓ ~r·~J
~ , (6.4)

where the rotation axis ~r is uniformly random and the angle ✓ has a distribution, P (✓),
which we take to be Gaussian:

P (✓) / e
� ✓

2

2�2 . (6.5)

The overall strength of the depolarization process is quantified by �, the width of the distri-
bution of ✓.

We implement the depolarization process described by Eq. 6.4 using three liquid crystal
wave plates (LCWP) as shown in Fig. 6.1b. Each LCWP applies an adjustable polarization
rotation, and the rotation angle can be changed very rapidly. This allows us to easily apply
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Figure 6.2. Typical results of state tomography, and
the e↵ect of SU(2)-jitter depolarization. In plots (a)-(c), we
show experimentally reconstructed Wigner functions (plotted
on the Poincare sphere) for three di↵erent states after they
have been decohered by three di↵erent amounts of SU(2)
jitter. Row (a) shows spin-coherent states with x=0, row
(b) shows “2-design” states with x=0.15, and row (c) shows
nearly-N00N states with x=0.47. Each row shows the ef-
fect of applying depolarization with strength (see Eq. 6.4)
� = 0, 0.5, 1.5. In (d), we plot the purity of the same re-
constructed states shown in (a-c). The solid lines are the
theoretical predictions given by simulations of the process
(Eq. 6.4).
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50 di↵erent (randomly selected) rotations to implement a single process, closely approxi-
mating the ideal process of equation 6.4 as a statistical mixture of these 50 random unitary
processes as:

D̃�[| i h |] =
50X

k=1

e�i✓
k

~r

k

·~J
~ | i h | e+i✓

k

~r

k

·~J
~ . (6.6)

Using this implementation we can apply precisely calibrated SU(2) jitter. We verified both
our state preparation and our implementation of depolarization by performing state tomog-
raphy on ⇢ = D̃� [| xih x|] for several values of x and �. Figure 6.2a-c shows the Wigner
functions of the resulting reconstructed states. Plots in column 1 are for undecohered states,
while columns 2-3 show the e↵ects of SU(2) jitter with strengths of � = 0.5 and � = 1.5
rad (respectively). Increasing � blurs the Wigner function. This is captured quantitatively
by the state’s purity, a reasonable proxy for the amount of depolarization su↵ered. Fig-
ure 6.2d plots the output purity (computed from the tomographic estimate) versus �, and
compares it to the prediction of numerical simulations of D̃� (solid lines), for three di↵erent
input states with x = 0 (blue), x = 0.15 (green) and x = 0.47 (red). The only inputs to
our simulation are the experimentally measured purities of the input states when � = 0,
which in a perfect experiment would be 1, but are slightly degraded by experimental noise.
We observe excellent agreement between simulation and experiment, confirming that our
process performs as expected. In particular, the N00N state loses purity more rapidly than
any other state (as � is increased), indicating that N00N states are indeed the most fragile
(and thus potentially sensitive) to SU(2) jitter. The fragility of N00N states to a similar
model of SU(2) depolarization was also pointed out in [49]. In the next section we discuss
an experiment exploiting this fragility to detect depolarization.

6.2 Detecting depolarization

We examined di↵erent probe states e↵ectiveness at detecting SU(2) jitter. This corresponds
to distinguishing between two processes: 1l (no depolarization) or D� (SU(2) jitter). Acting
on the probe state | xih x|, these alternatives produce either | xih x| or ⇢D = D� [| xih x|],
and to distinguish these alternatives we simply perform a POVM measurement with two
outcomes,

M = {| xih x| , 1l� | xih x|}. (6.7)

In simple terms, we are checking to see whether the probe state changed at all. If done
perfectly, this protocol has one-sided error; it may fail to detect D, but will never detect it
in error.

To implement this measurement experimentally, we recall that if | xi is a spin-coherent
state then it can be written as Û |2, 0iH,V for some Û 2 SU(2). We can implement Û † using
the quarter- and half-wave plates labeled Q2 and H2 in Fig. 6.1c, and after performing this
inverse rotation on the output state, detection of two photons at the H-port of the PBS
corresponds to the | xih x| outcome of M. Similarly, if | xi is a N00N state, it can be
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Figure 6.3. Sensitivity of di↵erent states to depo-

larization: This figure shows two di↵erent measures of the
probe state’s ability to detect depolarization, for three dif-
ferent probe states, and compares theoretical predictions to
experimental data. Plot (a) shows the probability that depo-
larization is not detected, which is simply the probability of
finding the system in the same state in which was prepared
despite depolarization having happened. The theory (solid
line) is simply the projection h x| ⇢ | xi, where | ix is the
probe state and ⇢ is the decohered probe state. Experimental
data points are empirical probabilities of nondetection. Plot
(b) shows the sensitivity (Eq. 6.12) scaled by

p
N (where

N is number of two-photon counts detected at each point) of
each state to small changes in depolarization, the solid lines
are calculated from the slopes of the fit to the detection data
shown in (a), and the dashed lines are calculated for ideal
input states.
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written as

| ix =
1p
2

⇣
|2, 0iH,V + |0, 2iH,V

⌘

= U |1, 1iH,V

where U † can be implemented by a HWP at 22.5�. Thus, after performing this inverse
rotation on the output state, detection of 2 coincident photons at the H- and V-ports of the
PBS corresponds to the | xih x| outcome of M.

In our experiment, for states with x 6= 0 or x 6= 0.5, we estimated the value h| xih x|i
indirectly from two measurements. In general the density matrix describing the system at
the output will be:

⇢ =

0

@
a f d
f ⇤ b g
d⇤ g⇤ c

1

A , (6.8)

where ⇢ is written in the same basis as the state in equation 6.3. If the process is pure SU(2)
depolarization, and the input state is given by equation 6.3 then d will be real. (We check
that this is the case by performing quantum state tomography on ⇢ for several depolarization
strengths.) In this case, the expectation value of the projection onto | xi is

h| xih x|i = Tr(| xih x| ⇢) = ax+ c(1� x) + 2d
p

x(1� x). (6.9)

So we can estimate h| xih x|i, for any value of x, by measuring a, c, and d. If ⇢ is sent
directly to a PBS both photons will be transmitted with probability a, both will be reflected
with probability c, and one will exit each port with probability b. All of these probabilities
can readily be measured via coincident detection between di↵erent combinations of the four
detectors in fig 6.1c. To measure d, a half-waveplate at 22.5� is inserted before the PBS.
Now one photon will exit each port of the PBS with probability

PHV =
1

2
� d� b

2
. (6.10)

Since b is already known, measuring PHV gives us an estimate of d, which gives us enough
information to reconstruct h| xih x|i for any value of x. While our “two-step” method
works, it is possible to directly perform this projection for any biphoton state. One way to
do this would by time reversing the state preparation techniques of [58, 66, 36]), where it is
shown how arbitrary N-photon polarization states (occupying the a single spatial mode) can
be built up by combining N photons one-at-a-time into the same mode. The polarization of
each individual photon sets the N-photon polarization state. The time reverse of this process
would be to split a single-mode N-photon polarization state into N separate spatial modes
(probabilistically), and to detect a single photon with a specific polarization in each mode.
Thus this would correspond to projecting onto a state set by the N di↵erent polarization
measurements.

We note in passing that this protocol is reminiscent of atomic interferometry. There, too,
a probe state is prepared and then measured later. The probability (and statistics) of the
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results typically oscillate over time, because di↵erent atomic states have di↵erent energies
and accumulate quantum phases that beat against one another. Depolarization makes these
oscillations decay and eventually disappear, and this decay is often used to estimate the
depolarization strength in the system. Thus, in both interferometry and our experiment,
greater fragility to depolarization enables detection of weaker depolarization.

We created a range of probe states parameterized by x 2 [0, 1
2
], varying from a spin-

coherent state at x = 0 to a N00N state at x = 1
2
(Fig. 6.1a), subjected them to depolariza-

tion (Fig. 6.1b), and performed the measurement M given in Eq. 6.7 (Fig. 6.1c).

Figure 6.3a shows the experimentally observed probability of failing to detecting SU(2)
jitter as a function of the jitter’s strength (�), for three representative probe states: a N00N
state (red), a spin-coherent state (blue) and an intermediate state with x = 0.15 (green).
The experimental results are in good agreement with the simple theoretical prediction (solid
lines) given by

P (�) = h x|D [| xih x|] | xi
= Axe

�2�2
+Bxe

� �

2

2 + Cx, (6.11)

where Ax, Bx and Cx are straightforward but unwieldy functions of x (see equation 4 in
section A of the Supplemental Material for their form). We see that the N00N state is
consistently the best detector of SU(2) jitter, and that detection probability for any fixed
depolarization strength appears to increase (as expected) monotonically with x.

Metrology is also concerned with estimating (rather than just detecting) parameters of
a process. In this case, that means estimating �, and this requires repeating the experiment
more than once, since a single experiment can at best detect that � > 0. We can then
estimate the probability plotted in Fig. 6.3a, e.g. as P̂ = n/N , where the experiment was
repeated N times and depolarization was detected in n of them. Armed with our knowledge
of the initial state and our estimate P̂ of the nondetection probability, we can then estimate
� (e.g., by simply inverting the appropriate theoretical curve shown in Fig. 6.3a. Of course,
our estimate (�̂) will have some uncertainty:

� = �̂ ±��.
�� is the smallest change in � that can be detected with reasonable probability. We refer to
it as sensitivity (although it should be noted that smaller �� implies greater sensitivity!),
and it is given by [67]

�� =
�P (�)
dP (�)
d�

, (6.12)

where �P (�) is the standard deviation of the estimated nondetection probability P̂ . Since

our detection protocol is a Bernoulli (coin-flip) process, �P (�) =
q

P (�)(1�P (�))
N

. Both P (�)

and dP (�)
d�

depend only on x (a property of the probe state) and can be computed from Eq.
6.11.
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In Fig. 6.3b, we show the dependence of sensitivity, scaled by
p
N (whereN is the number

of times the experiment is repeated) on � and the probe state. We scale the sensitivity
by

p
N that it only depends on the input state and �. Since sensitivity is not a directly

observable quantity, we compare a pure theory prediction to an empirical fit. Dashed lines
are pure theoretical predictions, in which both P (�) and dP (�)/d� are calculated using Eq.
6.11 for ideal input states. The solid lines are empirical fits: both P (�) and dP (�)/d� are
calculated from the smooth empirical fits to data shown as solid lines in Fig. 6.3a.

Whereas N00N states are always the best detectors of depolarization, we observe that
they are only the best at measuring � for low values of �. Around � ⇡ 1, they become
less sensitive than the other states. This is a direct consequence of their extreme fragility;
since almost any amount of depolarization disturbs the N00N state, it does not distinguish
well between medium and strong depolarization. We also observe a significant discrepancy
between the ideal sensitivity (dashed lines) and the observed value at small �. This is because
our input states are imperfect and not pure – even at � = 0, there is a small probability that
we will (falsely) detect depolarization! Thus, P (�) is never 1, and �P (�) 6! 0 as � ! 0.
Still, we find that N00N states are clearly optimal for � . 0.9, beating spin-coherent states
by a factor of 1.44±0.05, which agrees well with our theoretical prediction of

p
2 (see section

A of the Supplemental Material for derivation).

6.3 Quantum Process Tomography

Using the protocol above, we can detect depolarization, and we can even quantify its strength.
But to do so reliably, we needed to assume that the process is of a specific one-parameter form
(pure SU(2) jitter). For example, a consistent and coherent SU(2) rotation would violate this
assumption, and might go entirely undetected or be incorrectly diagnosed as jitter (depending
on the axis of the measurement and the nature of the probe state). Characterizing general
depolarization processes, and correctly diagnosing what is happening, requires quantum
process tomography (QPT) [42, 43].

QPT requires not one, but an ensemble of input states – and preparing a suitable ensemble
can be quite challenging. We avoid this complexity by using the ideas of Lobino et al. [44],
and generating diverse input states by applying diverse simple transformations to a single
fiducial state (see Fig. 6.1d). Lobino et al. prepared optical coherent states by translating
the |0i state. The equivalent protocol in our biphoton system would be to prepare the
|2, 0iH,V state and then generate an ensemble of spin-coherent states by performing di↵erent
SU(2) rotations on it. However, we go one step further and generalize this process by varying
the fiducial state (parameterized, again, by x 2 [0, 1]). We study the dependence of process
reconstruction fidelity on x, to determine (in particular) whether the N00N states that best
detect depolarization are also the most best probe states to characterize it.

QPT reconstructs the entire process matrix (or superoperator) from the observed mea-
surement statistics. This reconstruction, in essence, involves solving a set of linear equations
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Figure 6.4. Inaccuracy of process reconstruction.

This figure shows the average process infidelity (API, see Eq.
6.13 – smaller is better) between the true process and its to-
mographic reconstruction, and its dependence on the fiducial
state used to generate the set of probe states for QPT. Solid
lines are simulations of the experiment using 10 randomly
oriented pure input states, while dashed lines are simulations
using the 10 experimental input states (as determined using
state tomography, and in particular accounting for the decline
in their purity as x increases). Squares are experimentally
estimated process infidelities. Red and blue represent dif-
ferent depolarization strengths. INSET: “Completeness”

of input sets: The inset plot shows the determinant of the
probe states’ Gram matrix (normalized to a maximum of 1),
whose inverse appears in the tomographic reconstruction. It
depends on x; larger determinants yield a more robust inver-
sion, while zero determinant indicates a tomographically in-
complete set. We observe that a N00N fiducial state (x = 1

2)
yields a probe set that is not tomographically complete, while
for x ⇡ 0.15 the reconstruction should be as robust and ac-
curate as possible. The main plot confirms this theoretical
prediction.
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described by a the Gram matrix M of the input states. The reconstructed process is ob-
tained by applying M�1 to a vector of observed statistics. M must obviously be full rank,
but (moreover) it should not have any small eigenvalues. If M has small eigenvalues, M�1

will amplify small statistical fluctuations that result from finite sample size into large errors,
and the reconstructed process will have low fidelity with the true process.

This property (the “tomographic power” of a set of probe states) is hard to quantify
exactly, but it can be captured approximately by the determinant of the Gram matrix. This
is zero if (and only if) the probe ensemble completely fails to probe at least one dimension
of state space, and it achieves its maximum value if (and only if) the probe ensemble is a
2-design. Larger determinants are better, implying that the inversion will amplify errors
less. In the inset to Fig. 6.4, we plot this determinant as a function of the fiducial state’s
x-value. For a N00N state (x = 1

2
) the determinant is zero! So, remarkably, the set of states

generated by the SU(2) orbit of a N00N state is incomplete – it does not enable QPT at
all, and is completely oblivious to at least one parameter of the process (the Gram matrix
of the SU(2)-covariant set generated using a N00N state is shown to be rank deficient in
section B of the Supplemental Material). At the opposite extreme (x = 0), spin-coherent
states do generate a complete set, suitable for QPT – but, like the coherent states of Lobino
et al., they are not optimal for the task. The determinant is small, indicating that at least
one parameter of the process is poorly resolved. The maximum value of the determinant is
achieved at an intermediate point, x = 1

2
� 1

2
p
2
⇡ 0.15, which generates a set of probe states

that are neither N00N nor spin-coherent. We predicted that this set of states would enable
optimally accurate QPT.

The x ⇡ 0.15 ensemble is special and unique in another way; it forms a 2-design (as
shown in section B of the Supplemental Material). Informally, 2-designs are sets of quantum
states whose projectors span the vector space of operators as uniformly as possible; more
precisely, the ensemble’s 2nd moments are equal to those of the uniform Haar ensemble over
pure states. Common examples of 2-designs include mutually unbiased bases (MUBs) [68]
and symmetric informationally complete measurements (SIC-POVMs) [69, 70], and there is
strong theoretical [68] and experimental [71] evidence that 2-designs are optimal for state
tomography. Our results here are the first experimental evidence that 2-designs are optimal
for QPT (see theory in Refs. [47, 48]).

Since theoretical analysis predicts that the x ⇡ 0.15 ensemble should outperform ev-
ery other SU(2)-generated ensemble at QPT (including the nominally more-sensitive N00N
ensemble), we did an experiment to test the prediction. We prepared several di↵erent SU(2)-
covariant sets of input states – each generated by applying 10 di↵erent collective polarization
(SU(2)) rotations to a single fiducial state with values of x ranging from 0 to 0.47 as detailed
in Fig. 6.1d – and used them to perform QPT on an SU(2)-jitter process. No a priori
assumptions were made about the nature or structure of the process1. We per-
formed QPT by (1) preparing many copies of each of the 10 states, (2) sending them through

1We also verified experimentally that our process preserves the biphoton structure – i.e., it does not violate
permutation symmetry, and therefore does not change the population in the anti-symmetric subspace – and
so we can treat it as a quantum process on a 3-dimensional Hilbert space.
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the process, (3) performing a tomographically complete set of measurements on each output
state, and (4) using maximum-likelihood estimation (MLE) to reconstruct the process.

Evaluating the performance of an experimental tomographic procedure (i.e., to rank our
three di↵erent input ensembles) is nontrivial. We cannot assume that we know the “true”
process, yet the standard metric of tomographic success is “How close is the reconstructed
process to the ‘true’ process?” We circumvent this problem by using a measure of accuracy
that can be estimated directly, the average process infidelity(API) [72]. The API between
two processes E and F is the [mixed-state] quantum infidelity 1� F (E [| ih |] ,F [| ih |]),
averaged over all pure inputs to the process according to the unitarily invariant Haar measure:

API(E ,F) =

Z

Haar

[1� F (E [| ih |] ,F [| ih |])] d (6.13)

The API vanishes for a perfect reconstruction, and increases with errors in tomography.

We estimate the true process using QPT; D̂� is our estimate. To quantify the quality of
D̂� we empirically measure the API by:

1. Prepare [many copies of] 40 di↵erent randomly chosen input states ⇢i (i = 1 . . . 40).

2. Use state tomography to obtain an estimate ⇢̂i of each input state

3. Apply the depolarization process (D�) to each state.

4. Use state tomography to obtain an empirical estimate ⇢̂0i of each output state.

5. Compute the quantum fidelity between (a) the empirical output state ⇢̂0i and (b) the
output state predicted by our QPT estimate, D̂� [⇢i].

6. Averaging this fidelity over all 40 input states.

The resulting number requires no a priori assertion about the “true” process, and it is a
good quantifier of how accurately the QPT estimate D̂� predicts independent experimental
results. But it is also an estimate of the theoretical API as defined in [72], and deviates
from it only inasmuch as (i) we have approximated the integral in Eq. 6.13 by a sum over
40 random states; (ii) those states are not quite pure; and (iii) state tomography on finitely
many samples is never quite perfect (⇢̂ 6= ⇢).

Figure 6.4 shows the dependence of the empirical API on the fiducial state parameter
x, for two di↵erent depolarization strengths: � = 0.5 rad (blue) and � = 1.5 rad (red).
Points represent experimentally measured APIs, while solid and dashed lines represent two
di↵erent simulations of our experiment. The solid lines are generated by simulating process
tomography using 10 randomly chosen pure input states; the dashed lines are generated
by simulating process tomography using the same 10 nearly-pure input states used in the
experiment. Both simulations used 40 di↵erent random states to estimate the empirical API,
just as in the experiment.
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We observe a minimum in the API (i.e., optimal reconstruction fidelity) at x ⇡ 0.15 for
both of the depolarization strengths – exactly where theory predicted. This minimum API
coincides with the maximum value of det(M) (Fig. 6.4, inset). We also confirm that spin-
coherent probe ensembles are not optimal. N00N state ensembles consistently generate the
least accurate QPT. Ironically, while the N00N ensemble should in theory fail catastroph-
ically, it is (slightly) redeemed by experimental imperfections in state preparation, which
result in the N00N ensemble being not quite perfectly incomplete. However, it still achieves
a much worse API than any other SU(2)-covariant input ensemble.

6.4 Conclusions

It is well known that entanglement can (and usually does) improve metrology. However, it
has also been taken for granted that ensembles of coherent states (which, in multi-photon
systems, are not entangled at all) are “good enough” for process tomography. We have
shown that both of these beliefs should be interpreted cautiously. On one hand, while
maximally entangled N00N states are indeed optimal for detecting a particularly common
and important form of decoherence, they are very bad for characterizing it in detail. And
while [spin]-coherent states are indeed su�cient for QPT, they are not optimal. Our results
can be summarized as showing that the most robust and flexible way to probe decoherence
is with “partly entangled” states, intermediate between N00N and coherent states.

Our experimental results show that in the presence of prior information (that the system
is undergoing pure SU(2) jitter), the optimal biphoton probe states are N00N states. We
expect that this result will be of utility in magnetometry and atomic physics, where interfer-
ometry is often used to estimate noise. On the other hand, in the complete absence of prior
information, we have shown that an intermediate entangled state is much better at perform-
ing QPT. Our method generalizes the technique of Ref. [44] – preparing a single fiducial state
and displacing it – to generate a set of states we believe are optimal for performing QPT on
any process, not just SU(2) jitter. This set of states forms a 2-design, and our work is the
first experimental evidence confirming that 2-designs are optimal for QPT. Furthermore,
we expect the advantage of 2-designs over other sets to increase with the dimensionality of
Hilbert space. It is also worth stating that our analysis could be generalized to other sym-
metry groups, but doing so is an unsolved problem. Our results imply that one can greatly
improve the accuracy of QPT by choosing the right set of input states – but, surprisingly,
the “right” states for QPT are not those most sensitive to the process. We conclude that
detailed state engineering can be very useful in tailoring probe states or ensembles to specific
tasks in the characterization (and ultimately remediation) of depolarization.
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